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Abstract

Recent technological advances in medical imaging have allowed for the quick acquisition of

highly resolved data to aid in diagnosis and characterization of diseases or to guide interven-

tions. In order to to be integrated into a clinical work flow, accurate and robust methods of

analysis must be developed which manage this increase in data. Recent improvements in in-

expensive commercially available graphics hardware and General-Purpose Programming on

Graphics Processing Units (GPGPU) have allowed for many large scale data analysis prob-

lems to be addressed in meaningful time and will continue to as parallel computing technology

improves.

In this thesis we propose methods to tackle two clinically relevant image segmentation

problems: a user-guided segmentation of myocardial scar from Late-Enhancement Magnetic

Resonance Images (LE-MRI) and a multi-atlas segmentation pipeline to automatically segment

and partition brain tissue from multi-channel MRI. Both methods are based on recent advances

in computer vision, in particular max-flow optimization that aims at solving the segmentation

problem in continuous space. This allows for (approximately) globally optimal solvers to be

employed in multi-region segmentation problems, without the particular drawbacks of their

discrete counterparts, graph cuts, which typically present with metrication artefacts. Max-flow

solvers are generally able to produce robust results, but are known for being computationally

expensive, especially with large datasets, such as volume images.

Additionally, we propose two new deformable registration methods based on Gauss-Newton

optimization and smooth the resulting deformation fields via total-variation regularization to

guarantee the problem is mathematically well-posed. We compare the performance of these

two methods against four highly ranked and well-known deformable registration methods on

four publicly available databases and are able to demonstrate a highly accurate performance

with low run times. The best performing variant is subsequently used in a multi-atlas seg-

mentation pipeline for the segmentation of brain tissue and facilitates fast run times for this

computationally expensive approach.
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All proposed methods are implemented using GPGPU for a substantial increase in com-

putational performance and so facilitate deployment into clinical work flows. We evaluate all

proposed algorithms in terms of run times, accuracy, repeatability and errors arising from user

interactions and we demonstrate that these methods are able to outperform established meth-

ods.

The presented approaches demonstrate high performance in comparison with established

methods in terms of accuracy and repeatability while largely reducing run times due to the

employment of GPU hardware.

Keywords: Image Segmentation, Max-Flow, GPGPU, Magnetic Resonance Imaging, De-

formable image registration, Myocardial Scar, Brain tissue
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Chapter 1

An Introduction to Medical Image

Segmentation

The introduction of computerized methods to the acquisition of medical images in the last half

of the 20th century facilitated the non-invasive mapping of the human anatomy. Magnetic

resonance imaging (MRI), computed tomography (CT), ultrasonography (US) and many other

imaging modalities are nowadays in routine clinical use to diagnose diseases, plan and guide

interventions, model morphologies, etc...

As stated in the early 2000’s [1], the growth in size and number of these images necessitate

the use of computers to facilitate processing and analysis. With recent technological advances,

the scale of the data has increased due to improved spatial resolution and the ability to ac-

quire volume series temporally. This increase has led to improvements in the ability to resolve

pathological phenomena and diagnose disease at earlier stages faster and with higher accuracy.

However, the increase in data demands robust and efficient means of automatically identifying

anatomical structures or pathologies for diagnostic purposes.

We define the task of extracting one or more objects of interest from an image as segmen-

tation. In this chapter, an introduction to medical image segmentation is given to provide the

reader with a historical and theoretical foundation in segmentation, on which the terminology

1
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and methods proposed in Chapter 2 to 5 rely.

1.1 The image as a function

Let us adopt the definition of a medical image volume from Birkfellner [2] as a discrete N-

dimensional (ND) mathematical function storing physical phenomena of the imaged anatomy

as gray values in smaller volume elements, called voxels (vx).

1.2 What is a segment?

Segmentation problems are commonly defined over the image domain Ω, where Ω is parti-

tioned into non-overlapping regions, or segments, S [1]. For K regions, determining the sets

or objects S k ⊂ Ω within the image domain, such that

Ω =

K⋃
k=1

S k , (1.1)

i.e. the union of regions making up the entire image domain and none of the sets S k and S j

overlap:

S k ∩ S j = ∅; f or k , j . (1.2)

The segments S k can represent objects such as anatomical structures, cavities and pathological

phenomena. We distinguish objects or regions of interest as foreground from non-relevant re-

gions, the background. In the simplest case, the binary segmentation problem (k = 2), we aim

at distinguishing a single object of interest S FG from the rest of the image domain Ω, the back-

ground S BG. In a multi-region segmentation problem, where there can be several foreground

and background objects, we do not necessarily distinguish between them and simply refer to

them as objects.
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We represent all segments as a proper discrete mathematical function with dimensional-

ity and size of the image domain Ω we derived it from, called a label map. The label map

represents a segmentation of the image and each object is represented by a pre-defined inte-

ger value (i.e. for multi-region segmentation a segmentation with K segments will typically

contain integer values from L(x) = k, i f x ∈ S k.

1.3 Clinical rationale

Image segmentation in the clinical practice is widely used as a tool to quantify information

about the anatomy and function of a patient. It can range from simple applications, such

as measurement of tissue volumes [3, 4] to determine whether the patient’s anatomical and

physiological parameters lie within or outside normal ranges, to complex disease classifica-

tion procedures, where human interpretation of the images is not feasible. A common purpose

of segmentation methods is to locate and quantify pathologies [5, 6, 7, 8] and use the addi-

tional information to aid diagnosis [9, 10, 11, 12]. Imaging and image-based quantification

of anatomical structures allow us to model morphology of the human and better understand

human development [13, 14] and underlying pathological processes [15, 16, 17].

Further, segmentation of medical images can be frequently found in interventional work

flows to facilitate measurements for surgical planning [18], modelling of pre-operative data [19,

20] or use during image-guided interventions [21, 22, 23], in particular for surgical navigation

[24, 25].

Lastly, the generation of representative virtual models of the human anatomy is required

for virtual surgery simulation [26, 27, 28], where novice interventionists are able to develop

skills and master new techniques before applying them in the operating room.
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1.4 Medical Image Segmentation Techniques

Similar to other fields, new techniques in medical image segmentation have been developed

over time to address new problems or to overcome limitations of previous methods. We attempt

to categorize commonly found techniques into two groups and review developments within

each group to better explain the choice of methods used in Chapters 2-5. Medical image

segmentation techniques can be split into two major tracks: I) boundary-based and II) voxel-

based segmentation techniques. This is not a perfect split. Methods have been developed which

take aspects of both tracks, but these tracks allow for the progress of segmentation research in

the past two decades to be more readily described.

1.4.1 Boundary-based image segmentation techniques

Initial attempts in medical image segmentation include methods based on evolving boundaries

from an initial set of labelled voxels to a boundary delineating an object of interest. In this

section we review some of the most commonly used techniques for segmentation and elaborate

on the limitations that motivated further development.

Region-growing

In the 1990’s, region-growing, in particular seeded region growing, was a widely clinically

used method due to its simplicity in computation and its generality in application. One of the

initial studies [29] describes an algorithm growing a region from an initial seed to an object of

interest. Given an initial region, or seed, at each iteration the boundary voxels, are compared

with respect to their similarity with their neighbouring voxels and if there is a high similarity

with the boundary voxel, the region grows to include similar neighbours for the next iteration

[29],

T =

x <
n⋃

n=1

A|N(x)∩ ,
n⋃

n=1

A , ∅

 (1.3)
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where A0, A1 . . . An are the current seeds and T is the set of not allocated voxels bordering

at the current seeding region and N(x) the neighbourhood around voxel x. Typically, within

a volume, 6- or 26-connectedness is employed. A similarity measure δ is defined to identify

which neighbours in N(x) are assimilated to the region Ai. A simple and commonly used metric

for δ is the absolute value of differences of the voxel intensity, g(x), and the mean of the region

Ai:

δ(x) = |g(x) −mean
y∈Ai(x)

[g(y)] | . (1.4)

This metric ensures that Ai adopts similar neighbouring voxels and grows to delineate a region

of interest with uniform intensity. The method is widely used in clinically motivated studies

and variants and adaptation can be found in abdominal [30, 31, 32, 33], cardiothoracic [34, 35],

vascular [36, 37, 38], neurological [39, 40], musco-skeletal [41], and mammography [42, 43]

applications.

A major limitation of this technique is that regions of interest can have very similar intensity

distributions (i.e. muscle tissue and blood in CT have very similar Houndsfield units and so are

not even visually distinguishable). If two anatomical structures share a boundary and the same

intensity distribution, the growing region will ’leak’ into undesirable regions. If the regions

have uniform intensities and clear boundaries, region-growing can be a parameter-free and

quick solution to many segmentation problems.

Many improvements have been proposed to overcome limitations of this method, such as

dependence on raster-order processing [44], extension to volumes specifically for medical im-

age segmentation [45], multi-spectral data [46], inclusion of homogeneity criteria [47], etc...

However, leaking remains a major limitation of this method, promoting the inclusion of bound-

ary or smoothness costs into methods.
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Active Contour Models

Active contour models (ACM) or snakes [48] are techniques to evolve a spline towards an

optimal region, by minimization of an energy. This energy combines information about the

image or from the user, so-called external forces with information derived from the contour

itself, the internal forces. It evolves from an initial position to a state of minimal energy, where

the snake evolution is often optimized via gradient descent. As described in [48], we can

formulate the snake parametrically as v(s) = (x(s), y(s)) and the associated energy Esnake along

the spline s, such that,

Esnake∗ =

1∫
0

Esnake(v(s))ds =

1∫
0

Eint(v(s))ds︸        ︷︷        ︸
Internal forces

+ Eimage(v(s))ds + Econ(v(s))ds︸                               ︷︷                               ︸
External forces

, (1.5)

Esnake is a summation of the internal and external forces. Eint is defined as

Eint =

α(s)
∣∣∣∣∣dv(s)

ds

∣∣∣∣∣2 + β(s)

∣∣∣∣∣∣d2v(s)
ds2

∣∣∣∣∣∣2
 /2 , (1.6)

where α(s) and β(s) are weights for the first order and second order terms, respectively. The

first order term enforces membrane-like behaviour and the second makes the snake behave like

a thin plate [48]. The snake evolves to a lower energetic state by minimizing Esnake. This can be

done via local optimization methods such as gradient descent. We note that through modifying

Eint by adjusting α and β we can enforce some kind of regularization to the region the snake

delineates, avoiding ’leaking’ into undesired regions.

Eimage encourages the snake to adhere to edges in the image, a simple example could be

Eimage = −|∇I(x, y)|2, where I(x, y) is the image intensity. Econ represents contraction forces of

the snake, which penalize or encourage growth. One example is the constant length penalty,

Econ = γ | dv
ds |, where γ is a constant.

A major disadvantage of using snakes for applications in medical imaging is that the snake
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often gets stuck in local minima and does not converge properly to the object of interest. More

recent developments aimed at addressing these problems, such as Gradient Vector Flow Snakes

[49]. Also, additional forces have been employed as in Balloon Snakes [50] or incorporation

of statistical models in Diffusion Snakes [51]. An inherent limitation of classical snakes is that

the formulation does not allow a change in topology, i.e. the snake cannot split to segment

non-connected segments. T-Snakes [52] aim at overcoming the inherent limitation of a snake,

however, more advanced representations of curves, such as level-sets are nowadays commonly

employed.

In spite of these limitations, snakes, due to their simplicity in implementation and use, are

often found as a solution to medical image segmentation problems [53]. Lastly, we highlight

the implementation of a 3D ACM in the open-source segmentation software ITK-SNAP [54]

(http://www.itksnap.org/ ), which is also a powerful tool to generate manual segmentations.

Statistical Shape Models

Since the introduction of Active Shape Models (ASM) in 1995 [55] and of Active Appearance

Models in 1998 by Cootes et al. [56], Statistical Shape Models (SSM) are widely established

in medical image segmentation. SSMs model shapes by statistically analyzing point sets from

a series of annotated training data. A recent review from Heimann and Meinzer [57] gives an

excellent introduction to developments on SSMs and is taken as a basis for this section.

Construction of SSMs

A shape can be represented as a set of landmarks or points distributed on a surface of an object

of interest. The term Point Distribution Model (PDM) [58] is frequently used interchangeably

with landmarks. A requirement for construction of an SSM is the availability of corresponding

landmarks across training datasets for statistical analysis. The construction of an SSM consists

of extraction of a mean geometry of a shape and several statistical modes of variation within

the geometry.

Spatial Alignment
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Shape is defined as a property that is invariant to similarity transforms, i.e. invariant to trans-

lation, rotation and scaling [57]. Creating a mean shape representation consist of alignment

of all training landmarks in a common coordinate frame. This can be done via generalized

Procrustes analysis [59, 60] and the well-known iterative closest point algorithm [61], which

minimizes the squared distance between two point sets analytically.

Dimensionality Reduction

The aligned sets of corresponding points is then subject to dimensionality reduction to extract

the most descriptive set of modes for the variation of points in the SSM. Assuming a Gaussian

distribution, we can use Principal Component Analysis (PCA) to extract these modes and order

them by their variances. Approximate retrieval of each individual shape can then be done via

linear combination of these modes. In order to constrain the variation each mode has to be

limited to a valid range of parameters, commonly ± 3 standard deviations.

Segmentation using ASMs

In most cases in medical image analysis, an SSM is used to segment new image data. For this

purpose, Cootes et al’s [55] employed ASMs initially used a gradient-based term as appearance

model to drive the segmentation, however soon after introduced AAMs [56] to incorporate

more advanced appearance models.

Limitations

While SSMs are known to be robust for many segmentation problems, a general disadvantage

is the requirement of large training databases to cover all variations in geometry. Additionally,

the robust identification of such landmarks in a new subject image can be challenging, even

when user interactions are employed [57].

Level sets

Initially introduced for shape tracking [62], level set methods (LSM) were adapted in the field

of image segmentation, because of inherent advantages of the formulation in the evolution of

surfaces, in particular overcoming limitations of ACMs, when changes in topology are required.
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As mentioned previously, the classical formulation of ACMs does not allow the contour to split

and merge as it is often required by segmentation problems. As in [63], the LSM formulates

the contour γ as a zero level set of the higher-dimensional level set function φ, such that

γ = { x ∈ Ω | φ(x) = 0 } , (1.7)

and the region membership is determined by the sign of the level set function φ [63]:

ROb ject = { x ∈ Ω | φ(x) > 0 } (1.8)

RBackground = { x ∈ Ω | φ(x) < 0 } (1.9)

The contour γ as the zero level set can then be evolved over time t via

∂φ

∂t
= V |∇φ| , (1.10)

where V is a designed velocity or speed function to evolve γ throughout the image domain.

We note that through this implicit formulation γ is able to readily change its topology and so

address a far wider range of segmentation problems.

With increasing data and its dimensionality, the computation of the curve evolution via the

LSM becomes increasingly expensive. Many approaches to optimize implementations, such

as using a narrow-band [64], sparse field [65] LSM representations have been introduced to

improve computational efficiency. Due to their tendency to incorrectly converge to local op-

tima, iterative max-flow methods have been studied and compared against LSM for evolution

of surfaces [66]. In particular, evolution methods directly relying on flow-maximization allow

a substantial reduction in evolution steps to convergence and allow fast GPU-based imple-

mentations have been subject of recent research [67]. Due to the popularity of LSMs, several

comparative studies and surveys describe and review improvements for LSMs in the recent past
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[68, 69, 63].

Because of their inherent advantages, LSMs are widely used in medical image segmentation

and are frequently found in complex problems, such as segmentation of the left [66, 70, 71, 72]

and right ventricles [73, 74, 75] in cardiac diagnostics and neuroimaging applications [76, 77,

78, 79].

1.4.2 Voxel-based image segmentation techniques

Thresholding

The simplest of all segmentation techniques is the binarization by a threshold, i.e. the parti-

tioning of the image domain by its intensity I(x) via the threshold T , such that

g(x) =


1, if I(x) > or < T .

0, otherwise.
(1.11)

where g(x) is the segmentation result. This concept can of course be extended to threshold

within two bounds to extract regions. This is particularly helpful in situations where the em-

ployed modality is able to image the object of interest with high contrast, such as bony struc-

tures or air compartments in CT [80], structures with acoustic impedance in US [81] or post-

enhancement imaging in cardiac MRI [82]. A widely referenced survey article on thresholding

techniques can be found in Sahoo et al [83].

Thresholding is also applied to images with multiple channels [84], as in color photographs,

where a threshold is employed on each channel separately and then combined by computing the

intersection of all thresholded channels. This concept can be readily employed in medical im-

ages, such as those from multiple MRI sequences, dual-energy CTs or digital histo-pathological

scans.

Often a threshold T is determined via user interaction, by interactively varying T until the

result is satisfactory. This however, introduces a potential bias from the operator, which has
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to be separately assessed on its robustness. Automated approaches include the well-known

Otsu’s method [85] or agreed standards such as the Full-Width-At-Half-Maximum (FWHM)

method [86]. The latter appears frequently in the segmentation of myocardial scar from Late-

enhancement cardiac MRI and it and other methods are constantly subject to comparative per-

formance analyses [82].

Clustering

A sub-field of algorithms in image segmentation is based on cluster analysis methods. Cluster-

ing methods aim to partition sets of objects in observed data into groups, such that each object

in a group is more similar to each other than to those in other groups. In particular, methods

using centroid-based and distribution-based clustering models appear frequently in medical

image segmentation pipelines. In this section we briefly review three clustering methods: the

k-means algorithm, fuzzy c-means and expectation-maximization.

K-means clustering

The standard algorithm MacQueen [87] introduced as k-means is also known as Lloyd’s algo-

rithm [88] and aims at partitioning n objects x the set S = S 1, S 2, ..., S k into k partitions, such

that

arg min
s

k∑
i=1

∑
x j∈S i

∥∥∥I(x j) − µi

∥∥∥2
, (1.12)

where µi is the mean intensity of objects in S i. K-means clusters the objects into k sets, such

that the L2-norm of each object towards the mean is minimized. We choose k initial means µi

and assign all objects to each mean according to shortest distance. In a second step, we update

all means µi to the mean of all assigned objects. The algorithm iteratively assigns and updates

the sets S until no points are re-assigned. Note that the resulting partitioning is dependent on

the initially set means µ, which are assigned randomly. Different initialization procedures were

proposed by several studies [88, 89] to obtain more consistent results.

Fuzzy c-means clustering
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The fuzzy c-means [90, 91] algorithm operates similarly to k-means and models the relation-

ship of objects probabilistically, where each objects is assigned a membership weight w of

belonging to a cluster. Similarly to k-means, the update step re-assigns cluster centres µ, but

under consideration of their membership weights w. The assignment step then adjusts the

membership weights, where m is a fuzzyfying parameter that determines cluster fuzziness:

µk =

∑
x wk(x)mI(x)∑

x wk(x)m . (1.13)

A good algorithmic comparison can be found in [92, 93] and several approaches in medical

image segmentation employ this algorithm [94, 95, 96]

Expectation maximization

In contrast to the centroid or mean-based cluster analysis as the fuzzy c-means or k-means algo-

rithms, the expectation maximization algorithm [97] is a distribution-based clustering method

that models a fixed number of Gaussian distributions and, as the above methods, is itera-

tively optimized to fit the observed data. Similar to the fuzzy c-means approach it returns

a fuzzy result, which can be discretized according to the most likely Gaussian. This algo-

rithm has demonstrated better robustness towards the random initialization than fuzzy c-means

[1]. A good tutorial on the method can be found at Western University’s Computer Science

Department [98] and published review papers [99, 100]. Due to its generality and the im-

proved robustness it has been frequently appearing in medical image segmentation literature

[101, 102, 103, 104, 105, 106, 107, 108].

Classifiers

A classifier partitions a feature space into sub-populations of given labelled training data

[109, 1]. In medical image segmentation such a feature space is commonly derived from image

intensities, either from a single intensity dimension (i.e. filters encoding neighbourhood infor-

mation, gradients, etc) or multiples (i.e. dual CT energies, multiple MRI sequences, pre- and

post-contrast enhancement imaging, etc), but can also contain binary or categorical measures.
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The general dependency on available training data makes classifier-based pipelines supervised

segmentations methods.

K-nearest neighbours

The K-nearest neighbour (KNN) algorithm [110] is a simple and parameter-free classification

method, where a sample s is assigned a class according to majority vote of the k ∈ Z+ nearest

neighbours in the feature space. Typically, the Euclidean distance is used to determine the

closest samples and the k training samples can be weighted in their contribution to the vote

by it. It is often employed together with dimensionality reduction techniques, such as princi-

pal component analysis if the distance to the nearest neighbours is too large due to the high

dimensionality of the feature space, i.e. the majority of training samples are equidistant [111].

Support vector machines

Classification mechanisms employing Support vector machines (SVM) [112] aim at construct-

ing a set of hyperplanes in N-dimensional (ND) feature space to partition this space into two

sets of ND samples, that maximizes the distance of each ND sample to each of the (N - 1)

dimensional hyperplanes, respectively. It was originally proposed to be a linear classifier and

extended to be able to solve non-linear classification problems by operating linearly in a trans-

formed feature space, which might result in non-linear classification in the original feature

space [113].

Multi-class problems are commonly addressed by a series of binary classification problems

and several proposed strategies [114, 115] can be found as solutions medical image segmenta-

tion problems [116, 117, 118].

Artificial Neural Networks

The term Artificial Neural Networks (ANN) summarizes loose group of methods simulating

biological learning via parallel networks of nodes [1, 119]. Approaches in image segmentation

employ ANNs as classification methods [120, 121] in a supervised manner, i.e. learning on

how to segment new patient data based on a training sample. Alternatively, ANNs can be used

in an unsupervised manner, as clustering methods [122, 121, 1].
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Decision Trees and Random forests

Decision Trees (DT) are trained predictive models that in a segmentation setting aim to classify

each voxel according to some input features, where the leaves of the tree represent the label or

category, respectively. If more than one tree is involved in the classification, i.e. several DTs

are trained on subsets of the initial training data, we term this a ’forest’.

Recently, Random Forests (RF) classifiers [123, 124, 125] have gained attention in medical

image segmentation [126, 127, 128, 129], where the initial training data is randomly split

into sub-samples for building the DTs. A particular advantage of this method is, that via the

randomization it is able to prevent over-fitting to the training data, i.e. it does not excessively

adapt to the training information and fail to classify new data. The gained robustness make RF

a preferred classifier particularly in medical segmentation problems.

Markov-Random Field Models

Markov random field (MRF) modelling is a probabilistic method commonly used together with

other segmentation methods modelling spatial interactions between voxels and regularizing

segmentations to obtain more contiguous results. The MRF models image domain as an undi-

rected graph where all voxels are represented as vertices and the neighbourhood interactions

are modelled using edges between these vertices.

This is of particular importance in voxel-wise methods, such as clustering and thresh-

olding, where local intensity inconsistencies, such as noise or artifacts from acquisitions can

cause small spurious regions [1]. Particularly in combination with fuzzy clustering methods

[130, 131], where probabilistic results can be directly modelled as an objective function, the

use of MRF is often modelled with a Bayesian prior maximizing the a posteriori probabil-

ity [132]. This approach is also frequently found in multi-atlas-based segmentation methods,

where registered atlas label need to be regularized and fused simultaneously [133, 134].

While MRF methods been valuable in the above applications, they nevertheless require

computationally expensive solvers, which becomes even more challenging with an increase in
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data.

1.5 Max-Flow-based Segmentation Techniques

With the introduction of MRFs as regularization mechanisms for image segmentation, graphi-

cal methods found their way into the field of medical image segmentation. In particular, graph

cuts, i.e. the partitioning of graph vertices into disjoint sub-sets, have gained attention in the

recent years, as dual (or mathematically equivalent) formulations have emerged in the field to

directly solve complex energy minimization problems efficiently.

In the field of computer vision, graph cuts are mainly employed to solve a variety of low-

level vision problems that can be formulated as an energy minimization problem [135]. This

includes regularized image segmentation, stereo vision and smoothing problems. Here, we

mainly focus on image segmentation and introduce the max-flow/min-cut theorem to ease the

reader into different max-flow-based segmentation methods.

Given the image domain Ω, every voxel v ∈ Ω must be assigned a label in some finite set

L. The goal is to find a labelling f that assigns each voxel v ∈ Ω a label fv ∈ L. We formulate

a problem as an energy to be minimized,

E( f ) = Edata( f ) + Esmooth( f ) , (1.14)

where the total energy to be minimized consists of an energy data term, measuring the disagree-

ment of f and the observed data and a regularization term Esmooth, that measures the extent of

smoothness [136]. The data term Edata in image segmentation is commonly formulated as

Edata( f ) =
∑
v∈Ω

Dv( fv) , (1.15)

where Dv measures, how well fp fits the voxel v given observed data [136]. Figure 1.1

depicts an artificial 3x3 pixel color image, from which we can derive an example data term Dv.
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A very simple Dv could be the L1 norm from an observed mean of an object of interest, i.e

Dv = | µ − I(v) |, where I(v) is the image intensity at the voxel v and the observed mean µ is

known or calculated from a sample of the object.

Figure 1.1: An artificial example of a 3x3 pixel color image (left), associated data term Dv

(middle) and obtained segmentation result (right).

1.5.1 Binary graph cuts

In the early 2000’s Boykov and Kolmogorov [135] popularized the use of graph cuts in medi-

cal image segmentation, by proposing an efficient dual algorithm for an energy minimization,

considering an energy in the form of

E( f ) =
∑
v∈Ω

Dv( fv)︸      ︷︷      ︸
Edata

+
∑
{u,v}∈N

Vu,v( fu, fv)︸              ︷︷              ︸
Esmooth

, (1.16)

where N is the set of interacting pairs of voxels v and u, often a neighbourhood. We note that

the terms in (1.16) are associated with the general energy formulation in (1.14).

Commonly in image segmentation, each vertex V in the graph G = V, E represents a voxel

and the edge E model the pairwise voxel interactions in 6-connected neighbourhood N. Addi-

tionally, two specialized nodes (in the binary segmentation case), called terminals, the source

s and the sink t, are connected to each vertex V . These terminals correspond to a set of labels

[135].
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The graph associated with the example in Figure 1.1 is shown in Figure 1.2 (left). Note,

how the data term Dv in Figure 1.1 (middle) is expressed as capacities of the source and sink

connections.

Figure 1.2: Corresponding graph to the segmentation problem in Figure 1.1. The source (red)
and sink (blue) nodes and the graph vertices V (black) are connected to a flow network (left).
A graph cut (right) is achieved by removal of edges, such that no flow can flow from the source
to the sink and the removed edges sum up to a minimum.

Solvers aim at partitioning the graph into two sets of vertices, so that there is no connection

between the source and the sink, by finding the minimum cut cost through all connected edges.

This problem is called a min-cut problem and is commonly solved over a (computationally

advantageous) dual, i.e. a mathematically equivalent formulation. The min-cut/max-flow the-

orem, independently proven in 1956 by Elias et al [137] and Ford and Fulkerson [138], states

that in a flow network as the graph G, computing the maximum-flow throughout the network is

dual to the computation of minimum-cut.

Dual formulations are commonly computationally less expensive and allow for implemen-

tation of inexpensive solvers to such complex problems. Ford and Fulkerson proposed the

augmenting paths algorithm [138] to solve the max-flow problem and are followed by many

others including the well-known push-relabel [139] algorithms.
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An important advantage of such energy minimization via max-flow is, that the resulting

segmentation is (approximately) globally optimal and so overcomes a limitation of many con-

tour propagation methods (LSM, ASM, etc), which converge to local (and potentially incorrect)

optima.

However, there are several drawbacks to such discrete, graphical approaches: i) algorithms

need to load the graph G = V, E into the memory, which can be extensive in volume images; ii)

the setup of the graph with 6-connected neighbourhood N causes inherent metrication artifacts.

This might be overcome by increasing the neighbourhood layout to resemble a sphere, i.e. 26-

connectedness [140], but will result in an even higher memory load; and iii) the formulated

pair-wise voxel interactions in Esmooth can cause elongated structures to shrink. This is particu-

larly undesirable in many medical segmentation problems dealing with elongated objects, such

as vasculature, airway trees, nerve fibres, etc.

Applications of graph cuts in medical image segmentation are frequently found in a wide

spectrum of applications, particularly where probabilistic costs are employed, such as interac-

tive [141, 142, 143] and atlas-based methods [133, 144, 145].

1.5.2 Continuous Max-Flow

An inherent disadvantage of discrete max-flow methods, such as [136, 135], is the appearance

of metrication artifacts in resulting labellings. This is due to the fact that the pair-wise in-

teraction potentials penalize more strongly along the component directions of the graph than

in other directions. Because of this, recent studies have proposed to solve this energy mini-

mization problem in continuous space, where this limitation does not exist. While the idea of

continuous max-flow was first introduced by Strang [146, 147], we focus our attention on the

method presented in Yuan et al [148], from which the methods in Chapters 2-5 evolved from.

Yuan et al. [148] introduced the continuous counterpart of the discrete max-flow model,

the continuous max-flow and proved its duality to the continuous min-cut model.
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min
S

∫
S

Cs(x)dx

︸       ︷︷       ︸
source terminal connections

+

∫
Ω/S

Ct(x)dx

︸       ︷︷       ︸
sink terminal connections

+

∫
δS

Ce(x)dx

︸       ︷︷       ︸
object boundary

, (1.17)

where C can be seen as the flow capacity of the voxel. This is analogous to the discrete max-

flow formulation, where we build a graph G = V, E of vertices V and a set of edges E, where

each vertex v is connected via spatial edges e. Again we connect all x (analogous to v) to two

specialized terminals, the source s and the sink t, via the terms
∫

S
Cs(x)dx and

∫
Ω/S

Ct(x)dx

respectively [148]. The weighted object boundary is analogous to the edges cut from E, but

reformulated for the continuous domain.

As with the discrete case, this problem can be addressed as the dual of a flow maximization

problem:

max
ps,pt ,pe

∫
Ω

ps(x)dx (1.18)

through a flow network subject to constraints, such as a capacity constraint of the flow ps and

pt passing the source and sink connections respectively,

0 ≤ ps(x) ≤ Cs(x)

0 ≤ pt(x) ≤ Ct(x)
(1.19)

and capacity constraints of spatial flows pe:

|pe(x)| ≤ Ce(x), . (1.20)

Further, in each node x the flow is conserved such that all incoming flows and all outgoing

flows are balanced,

div pe(x)︸    ︷︷    ︸
spatial flows

− ps(x)︸︷︷︸
source flows

+ pt(x)︸︷︷︸
sink flows

= 0 , (1.21)

The flow-maximization problem is solved via convex relaxation, where all imposed constraints
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are formulated as augmented Lagrangian functions. After convergence, the resulting segmen-

tation is obtained via the continuous labelling or indicator function λ ∈ [0, 1], which can be

thresholded to obtain binary result {0, 1}.

A major advantage of this method is that large parts of the max-flow method is inher-

ently parallel, which suggests its implementation on parallel computation architectures, such

as CUDA (NVIDIA Corp, Santa Clara, CA) or OpenCL (Khronos Group, Beaverton, OR) via

GPGPU. Such implementations allow for substantial improvements in run times on inexpen-

sive, commercially available graphics hardware, where even real-time performance on volume

images is feasible [149].

1.5.3 Potts Model to Multi-Region Segmentation

Initially proposed in statistical physics [150] to describe interaction of spins in a lattice, the

Potts model gained attention in image and signal processing. It can be used to describe the

minimization problem of multi-region partitioning in image segmentation [151, 136, 152] and

reduces itself to a binary problem when used with two labels. For three or more labels the

problem is NP-hard. NP stands for non-deterministic polynomial-time and is used to describe

problems where a provided solution can be verified in polynomial time, i.e. verification is

computationally feasible, even if finding such a solution to verify is not. NP-hard describes

the class of problems that are at least as hard as any NP problem, and the existence of exact

solver for any problem in this class is unknown. Instead of computing the exact solutions,

global optimum to the Potts problem can be approximated [136]. Yuan et al. introduced a dual

max-flow solver to the continuous Potts model problem [152], possessing the same favourable

advantages as the continuous binary solver [148]: It avoids metrication artifacts and can be

readily implemented using GPGPU to create a fast (approximately) globally optimal solver for

image segmentation problems.

Analogous to the binary formulation, the energy in a continuous multi-region case can be



www.manaraa.com

Chapter 1. Introduction 21

formulated as,

min
{Ωi}

n
i=1

n∑
i=1

∫
Ωi

D(li, x)dx︸               ︷︷               ︸
Data term

+ λ

n∑
i=1

|∂Ωi|︸      ︷︷      ︸
Regularization term

, (1.22)

subject to,

∪n
i=1Ωi = Ω and Ωk ∩Ωl = ∅, ∀k , l , (1.23)

where Ω is the image domain to be partitioned into n segments, D(li) is the data penalty term

for label i and λ the parameter to weight the contribution of the regularization term to the total

energy. The perimeter of each segment can be computed by

|∂Ωi| =

∫
Ω

|∇ui|dx, i = 1...n (1.24)

and the Potts model energy from (1.22) rewritten to

min
ui(x)∈{0,1}

n∑
i=1

∫
Ω

{ui(x)D(li, x)︸        ︷︷        ︸
Data term

+ λ|∇ui|︸︷︷︸
Smoothness term

}dx, (1.25)

subject to (as in (1.23))
n∑

i=1

ui(x) = 1 and ui(x) ≥ 0, ∀x ∈ Ω , (1.26)

according to [152].

The issue of energy minimization of such problem is described in the Appendix of Chapter

2. A recent review of the Potts model in both the discrete and continuous space can be found

in [153].

1.5.4 Ishikawa model

Another graph configuration to address multi-region problems has been introduced by Ishikawa

[154] in the discrete space and recently described in the continuous setting [155]. The Ishikawa

model allows for a linear ordering to be defined over the labels, such that one label has to be a
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subset of predecessor on lower level and can be formulated in the continuous space as,

min
ui(x)∈{0,1}

n∑
i=1

∫
Ω

(ui−1 − ui)Didx︸                      ︷︷                      ︸
Data term

+

n∑
i=1

∫
Ω

λi|∇ui|dx︸              ︷︷              ︸
Smoothness term

. (1.27)

subject to (as in (1.23))

u0(x) = 1 and ui−1(x) ≥ ui(x) and un(x) ≥ 0, ∀x ∈ Ω , (1.28)

Such ordering constraints allow to arrange labels in a manner to reflect the topology of anatom-

ical compartments, for example, the whole heart in a volume scan contains the myocardium,

which further contains the blood pool. Note, that in comparison with the formulation of the

Potts model, in (1.25) the Ishikawa model has the regularization weight λ indexed per label,

allowing for different smoothness on each of the n levels (see (1.27)).

1.5.5 Hierarchical models

In the course of this thesis, we will investigate the ability of flow-maximization methods in the

continuous space and the ability to arrange labels to be segmented under similar topological

constraints to better segment the anatomy of interest. For this purpose, we will combine aspects

of the continuous Ishikawa and Potts problems and extend it to arbitrary labelling hierarchies.

In the course of the following chapters, we demonstrate that such optimization problems

can be solved rapidly and be used to address open segmentation problems of clinical interest.

1.6 Validation of Segmentation Techniques

To evaluate the performance of a segmentation technique, we can differentiate between desired

aspects of a proposed method to solve a problem. Generally, newly developed methods at-

tempt to overcome limitations of former methods or are employed on new image data. For this
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purpose, we aim to compare newly developed methods in terms of different aspects of perfor-

mance against existing methods or several variants of proposed methods to establish trade-offs

in these aspects.

Compared methods can be validated in terms of accuracy, run time, amount of user inter-

action required, robustness towards initialization, size of a training database or stability and

range of employed parameters. Definitions of performance in each of these aspects is entirely

dependant on what is clinically required and in most cases expert users determine what is an

acceptable range of performance.

In these sections, we will introduce metrics to quantitatively compare methods within an

experimental trial and consider caveats of employing them for different segmentation problems.

Gold standard

A gold standard method can be considered a benchmark to test against, however actual ground

truth knowledge is often not available. Over time, it has been established that a gold standard

method is not the perfect test, but the best one available [156]. In particular in medical imaging,

this gold standard is an expert interpretation of an image in the form of a manual annotation.

This can be in the form of anatomical landmarks to be identified, classification of diseases from

images or, as commonly found in the image segmentation literature, label maps resulting from

manual segmentations.

Run times

Run times are a crucial aspect within the clinical work flow. Especially, time sensitive problems

that often arise in interventional therapies, require special solutions to be applicable, however

any study can potentially benefit from improvements in run times to overcome limitations of

use.

When assessing a module of a pipeline, partial and total run times can be stated and quan-

titatively compared, when configured using hardware with the same specifications. Compu-
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tational complexity, convergence rates or different initializations can cause differences in run

times and worst cases have to be assessed to estimate computation time of an experimental de-

sign. Different paradigms on implementation, such as user interactions or computation using

parallel architectures, have a substantial influence on pipeline execution times and can largely

contribute to the clinical feasibility of a methodology.

Accuracy

For accuracy validation of a new method, we aim to compare it against a gold standard method

by computing one or more metrics and resulting mean scores of them. In the literature, the ac-

curacy of a segmentation method is determined in its score against a gold standard benchmark

in terms of a specific metric. Such a validation metric allows the accuracy of a segmentation

to be quantified, subject to limitations. For this purpose, we commonly complement metrics

measuring different aspects of the segmentation to get a more holistic assessment of the per-

formance.

We can categorize metrics measuring different aspects of accuracy into three groups: Re-

gional metrics, often determining an overlap ratio of a computed region A with the Gold stan-

dard region B, distance-based metrics, describing an distance error of the contour or surface of

region A and B, and volume-based metrics, comparing resulting volumes of the two regions.

In particular, volume-based metrics are commonly found in the clinical literature.

Regional metrics

There are three commonly employed overlap metrics to evaluate an algorithm-generated region

RA with that of a gold standard region RG and obtain a fraction of overlap:

Target overlap (TO) [157] ratio:

TO =
|RA ∩ RG|

|RG|
, (1.29)
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Dice Similarity Coefficient (DSC) as a mean overlap ratio: [158, 159]:

DS C =
2 |RA ∩ RG|

|RA| + |RG|
, (1.30)

and the

Jaccard Index (JI) [160, 159] as a union overlap ratio:

JI =
|RA ∩ RG|

|RA| ∪ |RG|
. (1.31)

While overlap ratio measures are commonly found in the literature, they are limited to be used

in comparison between different objects of interest, because of their inherent bias towards vol-

ume size, meaning that larger regions generally yield higher overlap ratios than thin, elongated

ones.

Distance-based metrics

Distance-based metrics can be calculated from either boundary voxels or vertices generated

from surfaces of regions RA and RG. To compute the average minimal distance between two

regions we employ the Mean Absolute Distance (MAD) error in mm.

MAD =
1

Ng

Ng∑
i=1

|d(gi, A)| , (1.32)

where gi is the set of gold standard points {gi : i = 1, ...,Ng}, A = {ai : i = 1, ...,NA} the set of

the algorithm points and d the Euclidean distance in mm.

To assess a worst-case scenario, we can complement the MAD results with those of the

Hausdorff distance (HD), representing the maximum minimal distance of two point sets:

HD = max
i∈[1,Ng]

{|d(gi, A)|}, (1.33)
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However, a maximum state value is a rather unstable measure, as it requires only one voxel

per region to be an outlier. To sidestep this limitation, a 95%-ile HD is computed for increased

robustness towards outliers.

Volume-based metric

As measured volumes are frequently employed in assisting diagnoses, volume-derived metrics

are often computed as a part of validation experiments to evaluate image segmentation meth-

ods. The total deviation of RA from RG can be computed as real δVE or absolute volume errors

|δVE |, or a percentage-wise error δVP and |δVP|, respectively.

Total volume error:

δVE = VA − VG (1.34)

Percentage volume error:

δVP =
(VA − VG)

VG
× 100% . (1.35)

Measured volumes alone do not include information of how well two regions spatially coincide,

and merely represent if volume measures derived from the tested segmentation algorithm are

associated with those of the gold standard.

Robustness

Robustness is the ability of a processing pipeline to cope with errors during execution and has

different impact depending on the application. For segmentation algorithms employed within

interventional settings, failure of execution can have a safety-specific ramifications, directly

impacting patient care. Within computer-aided diagnostics, incorrectly calculated metrics can

cause misdiagnosis, or at best an increase in time spent to resolve the issue.

We distinguish between several forms of robustness and can state descriptive statistics in

experiments to describe the expected number of outliers on a specific database.
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Initialization

Many advanced algorithms require proper initialization to yield acceptable accuracies. This

can be in form of user interaction, pre-processing, learning, etc. and the algorithm should be

tested for its ability to perform when such conditions are not ideal, as often happens in prac-

tice. When clinical performance standards are available, outliers can defined as occurrences of

performance outside clinically acceptable margins. As an alternative, outliers determined via

descriptive statistics can be stated and potential limitations of methods examined.

Training versus Testing

When a pipeline is dependent on prior information, such as learning of algorithm-specific pa-

rameters, or models from training data, it must be evaluated on an independent testing dataset.

Statistical significant differences in for accuracy metrics can indicate learned elements were

over-fitted to the training data and are not generalizable to other data. Further, the method

can be applied the same problem using other data (i.e. acquired from a different scanner, with

another acquisition method, from another center or entirely different modality).

Operator variability

Many segmentation algorithms rely on initialization or guidance via user interactions. These

are often subject to great variations, depending on training and experience of the operator

interacting with the segmentation pipeline and the potential impact on accuracy outcomes has

to be assessed. For this purpose, operator variability experiments are conducted to describe

the impact on accuracy between and within operators. Intra- and inter-operator variabilities

and can be stated via descriptive statistics, such as the Intra-class correlation coefficient (ICC)

[161] or via the range of one or more accuracy metrics. Measures often employed clinically

also include the Minimum Detectable Difference (MDD), Bland-Altman difference plots [162]

or the Coefficient of Variation [67].
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Range of parameters

Most advanced segmentation methods require a series of parameters to be adapted to a specific

problem. Determination of proper parameters is often a complicated problem and subject of

research in image segmentation [163, 164]. Parameter ranges used in segmentation pipeline

and associated accuracy metrics can be stated to assess the parameters’ effect on results [66].

1.7 Thesis Outline

The focus of this thesis is the development of fast and robust segmentation algorithms for use

in planning of cardiac resynchronization therapy and characterization of brain tissue. In the

methodological Chapters 2-5, I was responsible for conducting experiments, analyses, study

design and was the principle contributor to the manuscript. Note that each chapter would not

have been possible without the expertise of the many people involved and so within this thesis,

I refer not to myself, but the authors or ’we’. This in particularly refers to Chapter 5, where

I share the principal authorship with J.S.H Baxter, who contributed equally to the contents of

that chapter.

Chapter 2 proposes a new interactive method to segment myocardial scar tissue from Late-

Enhancement (LE) MRI and tests it based on performance, accuracy, and repeatability. It

develops the theory of hierarchical flow maximization as an extension to the well-known Potts

model in continuous space. This concept is further generalized and applied to brain images

in Chapter 5. Chapter 3 aims at comparing quantified scar volumes obtained from clinically

established segmentation methods on 2D and 3D LE-MRI acquisitions and assesses the repro-

ducibility of standard clinical approaches on the new 3D LE-MRI data. Chapter 2 is closely

based upon a journal article recently published in IEEE Transactions on Medical Imaging [7]

and Chapter 3 is currently under review in The International Journal of Cardiovascular Imag-

ing.

Chapters 4 introduces a new approach to deformable image registration based on total vari-
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ation regularization. It develops the theory and compares it against a smooth quadratic regular-

ization method. Both methods are then tested on their accuracy and run times when employed

in pair-wise brain registration, a problem occurring in multi-atlas segmentation pipelines. This

chapter has been submitted to IEEE Transactions on Medical Imaging and is currently under

revision.

Lastly, Chapter 5 employs the registration method developed in Chapter 4 within a multi-

atlas pipeline to segment brain tissue from multi-channel MRI. It generalizes the theoretical

contributions of Chapter 2 and 4 and contributes developed methods back to the community

in form of open source software libraries. This chapter is currently under review in Medical

Image Analysis.
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Chapter 2

Interactive Hierarchical Max-Flow

Segmentation of Scar Tissue from

Late-Enhancement Cardiac MR Images

2.1 Introduction

Late gadolinium enhancement (LE) cardiac MRI is a well-established clinical tool for visualiz-

ing and quantifying myocardial fibrosis, or ’scar’ in both ischemic and non-ischemic cardiomy-

opathy. As shown in [1], all patients with ischemic cardiomyopathy (ICM) and approximately

one-third of patients with dilated cardiomyopathy (DCM) have myocardial scar by LE-MRI.

Both of these conditions are associated with significant morbidity and mortality including hos-

pitalization for severe congestive heart failure (CHF), arrhythmia, and sudden cardiac death.

The clinical interest in myocardial scar imaging using LE-MRI has dramatically increased over

This Chapter is adapted from a published article. ©[2014] IEEE. Reprinted, with permission, from M. Rajchl,
J. Yuan, J.A.White, E. Ukwatta, J. Stirrat, C. Nambakhsh, F. Li, and T.M.Peters (2014). Interactive Hierarchical
Max-Flow Segmentation of Scar Tissue from Late-Enhancement Cardiac MR Images. IEEE Transactions on
Medical Imaging, 33(1), 159–172.
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Paper Dim Constraint Seg. & Extr. Method data N Time
Breeuwer[4] 2D Manual contours & man. adj. thresh. 10 humans -
O’Donnell[5] 2D Siemens Argus & SVM 14 humans -
Dikici[6] 2D [7] w/ man. corr. & SVM 45 humans -
Kolipaka[8] 2D Manual contours & thresholding 23 humans -
Positano [9] 2D GVF snakes & fuzzy c-mean clustering 15 humans -
Hsu[10] 2D Manual contours & FACT 11 canine -
Säring[11] 2D Manual contours on cine MRI & STRM 6 humans -
Hennemuth[12] 2D Live wire w/ Watershed Segmentation 21 humans -
Bogun[13] 2D - 14 humans -
Lehmann[14] 2D Model-based segmentation 20 humans -
Neizel[15] 2D Manual contours & thresholding 62 humans 1.6±0.2min
Elagouni[16] 2D [17] & thresholding with morph. cleaning 11 humans 0.2s/slc
Tao[18] 2D Manual contours & conn. filtering, RG 20 humans -
Elnakib[19] 2D - & Joint MGRF 168 slices 8 min/pat.
Flett[20] 2D Manual contours & thresholding 60 humans -
Neizel[21] 3D Model-based segmentation 20 humans -
Barbarito[22] 3D Atlas-based semi-automated 10 humans -

segmentation using [23] -

Table 2.1: Previous studies on extraction of non-viable myocardial tissue.

the past decade, while recent evidence has demonstrated the ability of myocardial scar imaging

to predict patient response to medical, surgical, and device therapies.

Moreover, extensive studies of using LE-MRI to predict response to cardiac resynchroniza-

tion therapy (CRT) and implantable cardioverter defibrillator (ICD) therapy, e.g. [2, 3], showed

that the presence of LE predicted worse prognosis for ICD/CRT patients and for CRT therapy

and confirmed the critical factor of quantifying the location and extent of the scar. On the other

hand, LE-MRI can also be applied to guide the delivery of cardiac electrophysiology proce-

dures, such as ablative therapies for elimination of atrial or ventricular arrhythmias. However,

the translation of such information into the clinical practice is challenging.

2.1.1 Previous Studies

In this section, we summarize previous studies on segmentation of myocardial scar tissue from

LE-MRI. We can categorize them into two groups based on image acquisition: 2D LE-MRI
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slice stacks and 3D whole-heart (WH) LE-MRI acquisitions (as shown in Table 2.1.1).

2D LE-MRI slice stacks

The application of highly anisotropic LE-MRI images in clinical practice has been established

since the introduction of ventricular viability assessment in the early 2000s [24]. While the

in-plane resolution of these short-axis (SAX) images is 1-2mm, the acquired slice thickness is

around 8-10mm along the long-axis (LAX). This property suggests the use of algorithms that

operate slice-by-slice on SAX views and interpolate resulting scar regions in LAX direction.

A common strategy for scar segmentation of 2D slices include myocardial segmentation to

limit the search of scar tissue (see Table 2.1.1) to valid regions. This approach can be found

in all 2D methods, except for [19] (see Table 2.1.1). The myocardial boundaries were either

segmented manually [4, 10, 21, 20] or semi-automatically [5, 9, 8, 12, 16] directly on the 2D

LE-MRI or obtained from other spatially registered images, such as cine MRI [6, 11, 18].

Within the given myocardial region, the differentiation between viable and non-viable

(scar) tissue can then be performed with the use of intensity thresholds, such as full-width-at-

half-maximum (FWHM) [8, 15, 20], signal-threshold-to-reference-mean (STRM) [8, 11, 20] or

manually adjusted thresholds [4, 8, 15, 20]. Other proposed scar extraction approaches include

decision making via SVM [5, 6], clustering [9], watershed segmentation [12] or morphological

operations with region growing [18] or region competition [16].

3D whole-heart LE-MRI acquisitions

In the past five years, several studies [25, 26, 27] proposed techniques to acquire LE-MRI with

WH coverage with potential to image scar tissue with high isotropic resolution. Such 3D WH

techniques have been extensively compared to their 2D predecessor in terms of their image

characteristics and have been attested the ability to better delineate lesions [28, 29], to image
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with higher scar signal intensity (SI) [29], better contrast [28, 29], improved image quality

[30], superior diagnostic quality scores [31, 28] and reduced acquisition times [32, 33? ] than

clinically standard 2D acquisitions.

In particular the ability to better resolve small lesions [26, 34, 35] is preferable in patients

with surgically corrected Tetralogy of Fallot (TOF) (NRV), where the scar is mostly found in

the thin myocardial wall of the right-ventricular outflow tract (RVOT). Recently, there have

been interventional studies making use of 3D WH LE-MRI in ventricular interventions, such

as ventricular tachycardia (VT) ablation [36, 37] and planning and image-guidance for CRT

[38, 39] at different field strengths. In particular the high resolution of cardiovascular magnetic

resonance (CMR) imaging deems it preferable for visualization of fibrosis in image-guided

interventional procedures [36, 37, 40].

However, these image-guided interventional therapies rely on accurate quantification of

scar from 3D LE-MRI. Recently, several approaches, e.g. [21, 22], were proposed to segment

the left ventricular (LV) scar tissue from such high-resolution 3D WH LE-MRI. Similar to

most 2D approaches, these methods require prior identification of the myocardium to constrain

subsequent intensity thresholding operations for scar segmentation. These myocardial seg-

mentations can be performed on early contrast enhancement (CE) MRI, which are intrinsically

spatially registered with the later acquired WH LE-MR images. However, errors appearing

in the additional myocardium segmentation do affect the accuracy of the subsequent scar tis-

sue segmentations. Errors due to early contrast enhanced endocardial boundaries and patient

movement between the acquisition time point of the CE MRI and the LE-MRI can potentially

affect the accuracy of the subsequently extracted scar.

Distinct from the above approaches, in this work we demonstrate a novel method to extract

the 3D cardiac scar tissue region efficiently and accurately from a single input LE-MRI, without

any additional prior segmentation of myocardial boundaries.
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2.1.2 Contributions

In this chapter, we propose a novel multi-region segmentation method to extract myocardial

scar tissue directly from a single 3D WH LE-MR image, by enforcing a customized ordering of

the regions specific to the anatomy. The segmentation algorithm is initialized via user-specified

seeds over a graphical user interface (GUI) and allows quick recomputations to progressively

obtain high accuracy scar segmentation results in a semi-automated manner. For this purpose,

we introduce a new partially-ordered Potts (POP) model to multi-region segmentation, that is

customized to the anatomical configuration and distinct intensity appearances in 3D LE-MRI.

We solve the proposed combinatorial optimization problem of the POP model by means of

convex relaxation. In this regard, we propose a new continuous max-flow formulation along

with a novel two-level flow configuration, namely the hierarchical continuous max-flow (HMF)

model, and demonstrate its duality or equivalence to the studied convex relaxed POP model.

The proposed HMF model implicitly encodes the specified cardiac region order/layout by ad-

ditional dual flows, which avoids tackling the challenging cardiac region order constraint ex-

plicitly. The HMF model also directly derives an efficient HMF (duality)-based algorithm by

modern convex optimization theories, which can be implemented on GPUs and achieve a high

numerical efficiency on the commercially available graphics hardware.

Experiments were performed over 3D WH LE-MRI datasets (NLV=35) obtained on a Siemens

Trio 3T MRI scanner in subjects with prior myocardial infarction and additionally on subjects

presenting with the right-ventricular (RV) scar in post-operative Tetralogy of Fallot (TOF)

repair images (NRV=15). Accuracy and preliminary operator variability experiments were con-

ducted and results compared to conventional region-constrained methods, e.g. the FWHM

(full-width at half-maximum) or the STRM (signal-threshold-to-reference-mean) method for

which prior myocardial segmentation is required. Both FWHM and STRM are methods where

the differentiation of scar and healthy tissue is determined via intensity thresholds. The FWHM

method determines this threshold by the maximum intensity in a sampled region within the

myocardium, while the STRM’s threshold is defined from a mean healthy myocardial intensity
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+2-6 standard deviations.

This chapter is an extension of a preliminary study that appeared in [41]. Here we extend

our prior work with a more extensive discussion of the optimization theory and numerical im-

plementation, and have added material related to the formulations and propositions. Evaluation

of the procedure was performed on an additional 40 datasets to comprehensively validate the

approach and compare its performance with others reported in the literature.

2.2 Methods

(a) (b)

Figure 2.1: Proposed label ordering based on anatomic spatial consistency ?? and contours
overlaid on a LE-MRI slice (b). The region constraining the heart is divided into three sub-
regions: myocardium (Rm), blood (Rb) and scar tissue (Rs). RB represents the thoracic back-
ground.

Given a 3D LE-MRI, two disjoint anatomical regions can be identified (see Fig. ?? and 2.1(b)):

the cardiac region RC and the thoracic background RB:

Ω = RC ∪ RB , RC ∩ RB = ∅ , (2.1)

where the cardiac region RC further contains three spatially coherent sub-regions: the my-
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ocardium Rm, the blood pool Rb and the scar-tissue Rs, i.e.

RC = Rs ∪ Rm ∪ Rb ; (2.2)

and the three cardiac sub-regions Rm, Rb and Rs are mutually disjoint

Rm ∩ Rb = ∅ , Rm ∩ Rs = ∅ , Rb ∩ Rs = ∅ . (2.3)

Typically, each of the sub-regions Rm, Rb and Rs has its distinct appearance, constituting the

complex appearance model of the whole cardiac region RC. This fact makes it challenging

to directly extract the boundaries of RC from the given LE-MRI image without any further

appearance knowledge and, in turn, identify its inherent sub-region of scar tissue Rs correctly.

In this chapter, we propose to encode the appearance of the cardiac region RC by three distinct

independent and identically distributed (i.i.d.) models of intensities w.r.t. Rm,b,s, and integrate

it into the new POP model which properly enforces the anatomical region layout prior (2.1) -

(2.3) (we refer to the Appendix A for a short review of the general Potts model without such

region order constraint).

Many studies [42, 43, 44, 45, 46, 47, 48, 49] have shown that incorporating such prior

knowledge of inter-region relationships greatly helps to improve the accuracy of the multi-

region segmentation problem.

In this section, we introduce the novel approach to accurately and efficiently extract the scar

tissue region Rs from the input 3D LE-MRI volume, which jointly locates the five anatomically

relevant regions RC,B and Rm,b,s by employing the a priori anatomical region layout (2.1) and

(2.2).

We solve the challenging combinatorial optimization problem associated to the proposed

POP model by means of convex relaxation, for which we propose the new and efficient con-

tinuous max-flow approach along with a novel hierarchical flow maximization structure, also

called the continuous HMF model.
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To simplify the notation, we define the label sets: L1 := {C , B } and L2 := { s , m , b }, i.e.

L2 represents the label set of the three cardiac sub-regions enclosed by the cardiac region RC;

2.2.1 Partially-Ordered Potts Model and Convex Relaxation

In this chapter, we study the segmentation of the input LE-MRI I(x) through the intensity

appearance models of the regionsRi, i ∈ L1∪L2, i.e. the respective probability density functions

(PDFs) of intensities. Such intensity appearance models provide a global descriptor of the

objects of interest in statistics, which can be learned from either sampled pixels or specified

training datasets.

In particular, the intensity appearance of each cardiac sub-region Ri, i ∈ L2, is distinct from

each other and visually more homogeneous within each corresponding local sub-region.

Let ωi(I(x)), i ∈ L2, be the PDF of the cardiac sub-region Ri, which gives the possibility

that each pixel x ∈ Ω belongs to Ri and depends upon the local intensity information I(x). The

PDF can be computed from regions of interest, for example user-specified seeds. Accordingly,

all the functions ωi(I(x)), i ∈ L2, in combination present a complex intensity description of the

whole cardiac region RC. Such a complex intensity model is shown to be more appropriate than

the often-used Gaussian mixture model (GMM) of intensities or appearances in practice [50].

In addition, let the function ωB(I(x)) encode the intensity appearance model for the background

region RB.

We therefore define the cost functions ρi, i ∈ B ∪ L2, of labelling each pixel x to be in

the cardiac sub-regions Ri, i ∈ L2, or the background region RB, by the log-likelihoods of the

respective PDFs [51], i.e.

ρi(x) = − log
(
ωi(I(x))

)
, i ∈ B ∪ L2 . (2.4)

Given the inclusion of three disjoint sub-regions (2.2) and (2.3) of the cardiac region RC,

labelling the pixel x ∈ Ω to be in any cardiac sub-region Rs,m,b directly enforces it to belong
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to the cardiac region RC, and its labelling cost is readily given by the cost to the respective

labelled sub-region Rs,m,b. Hence, the total labelling cost, for segmenting the input LE-MRI

I(x) into the regions

RC ∪ RB := {Rs ∪ Rm ∪ Rb} ∪ RB , (2.5)

can be consequently formulated by

∑
i∈B∪L2

∫
Ri

ρi(x) dx . (2.6)

To this end, we propose to segment the given 3D LE-MRI I(x) by achieving the minimum

total labelling costs along with minimal partitioning length between the regions such that

min
RC,B,Rs,m,b

∑
i∈B∪L2

∫
Ri

ρi(x) dx +
∑

i∈L1∪L2

∫
∂Ri

ds , (2.7)

subject to the constraints of the region order layout (2.1) - (2.3).

We call (2.7) the POP model, which is in contrast to the commonly-used Potts model as

discussed in the Appendix A.

Let ui(x) ∈ {0, 1}, i ∈ L1 ∪ L2, be the indicator or labelling function of the corresponding

region Ri, such that

ui(x) :=


1 , where x is inside Ri

0 , otherwise
, i ∈ L1 ∪ L2 .

Then we can equally formulate the region constraint (2.1) by

uC(x) + uB(x) = 1 , ∀x ∈ Ω (2.8)

and the constraints (2.2)-(2.3) of the cardiac sub-regions by

us(x) + um(x) + ub(x) = uC(x) , ∀x ∈ Ω . (2.9)
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Therefore, the POP model (2.7) can be equivalently represented by the labelling functions

ui(x) ∈ {0, 1}, i ∈ L1 ∪ L2, as follows

min
u(x)∈{0,1}

∑
i∈B∪L2

〈ui, ρi〉 +
∑

i∈L1∪L2

∫
Ω

g(x) |∇ui(x)| dx (2.10)

subject to the labelling constraints (2.8) and (2.9), where g(x) ≥ 0 represents the weight func-

tion of the total-variation term that measures the weighted area of each surface ∂Ri, i ∈ L1∪L2.

We denote the inner product in a Hilbert function space by 〈·, ·〉, i.e. for two functions f (x) and

g(x), 〈 f , g〉 :=
∫

f (x)g(x) dx.

In this work, we solve the POP model-associated combinatorial optimization problem

(2.10) by its convex relaxation:

min
u(x)∈[0,1]

∑
i∈B∪L2

〈ui, ρi〉 +
∑

i∈L1∪L2

∫
Ω

g(x) |∇ui(x)| dx (2.11)

subject to the linear equality constraints (2.8) and (2.9). Note, the indicator function u in (2.11)

is now in continuous space, i.e. u(x) ∈ [0, 1].

The binary-valued labelling functions ui(x) ∈ {0, 1}, i ∈ L1∪ L2, in the POP model (2.7) are

relaxed into the convex constraint ui(x) ∈ [0, 1] in (2.11).

Given the convex energy function of (2.11) and the linear equality constraints (2.8) and

(2.9), the challenging combinatorial optimization problem (2.10) is then reduced to the convex

optimization problem (2.11).

We call (2.11) the convex relaxed POP model.

2.2.2 Hierarchical Continuous Max-Flow Model

In this section, we introduce a novel continuous max-flow approach to solving the proposed

convex relaxed POP model (2.11) efficiently, where a new spatially continuous flow-maximization

model is introduced as a dual/equivalent to the convex relaxed partially-ordered Potts model

(2.11).
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Figure 2.2: The flow configuration of the proposed hierarchical continuous max-flow model:
links between terminals and the image domains, the source flow po(x), the cardiac flow pC(x)
and the sink flows pi(x), i ∈ B ∪ L2. Note that, unconstrained flows are red connections and
data costs for each label are blue.

We first specify the new two-level hierarchical flow configuration in the spatially contin-

uous setting (see Fig. 2.2), which is inspired by the proposed continuous max-flow approach

[52, 53] to the classical Potts model and min-cut problem:

– We add two terminals s and t as the source and sink of the flows, the two image copies ΩC

and ΩB w.r.t. RC and RB in parallel at the upper level, and the three image copies Ωs,m,b w.r.t.

Rs,m,b in parallel at the bottom level.

– We link the source s to the same position x of ΩC and ΩB, along which an unconstrained

source flow po(x) is defined. We link any x ∈ ΩC to the same pixel x at each of Ωs,m,b, along

which an unconstrained cardiac flow pC(x) is defined. In addition, we link each pixel x of ΩB

and Ωs,m,b to the sink t, along which the sink flow pi(x), i ∈ B ∪ L2, is given.

– Additionally, the spatial flow qi(x), i ∈ L1∪L2, is specified at x within each image domain

Ωi.
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Based upon the above settings of flows, we propose the HMF model which maximizes the

total flow streaming from the source s to the sink t, i.e.

max
p,q

∫
Ω

po(x) dx (2.12)

subject to

– Flow capacity constraints: the sink flows pi(x), i ∈ B ∪ L2 suffice:

pi(x) ≤ ρi(x) , i ∈ B ∪ L2 , (2.13)

and the spatial flows qi(x), i ∈ L1 ∪ L2 suffice:

|qi(x)| ≤ g(x) , i ∈ L1 ∪ L2 . (2.14)

– Flow conservation constraints: the total flow residue vanishes at each x within any upper-

level image domain Ωi, i ∈ L1 = {C, B}, i.e.

Gi(x) :=
(

div qi − po + pi
)
(x) = 0 , i ∈ {C, B} ; (2.15)

and the total flow residue also vanishes at each x within any bottom-level image domain Ωi,

i ∈ L2(= {s,m, b}), i.e.

Gi(x) :=
(

div qi − pC + pi
)
(x) = 0 , i ∈ {s,m, b} . (2.16)

As defined above, the source flow function po(x) and the cardiac flow function pC(x) are

both free of constraints.

Through analysis, we can prove the duality between the continuous HMF model (2.12) and

the convex relaxed POP model (2.11):

Proposition 2.2.1 The hierarchical continuous max-flow (HMF) model (2.12) and the convex
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relaxed partially-ordered Potts (POP) model (2.11) are dual (equivalent) to each other, i.e.

(2.12) ⇐⇒ (2.11) .

Proof Introduce the multiplier functions ui(x), i ∈ L1 ∪ L2, to each respective flow residue

functions Gi(x) in the flow conservation constraints (2.15) and (2.16). We can then express the

continuous HMF formulation (2.12) equivalently as follows:

min
u

max
p,q

L(u; p, q) :=
∫

Ω

po(x) dx +
∑

i∈L1∪L2

〈ui,Gi〉 , (2.17)

subject to the flow capacity constraints (2.13) and (2.14), where the flow functions po(x), pi(x)

and qi(x), i ∈ L1 ∪ L2, are abbreviated by p, q for short.

Clearly, the energy function L(u; p, q) of (2.17) just gives the Lagrangian function of (2.12).

In the following steps, we take similar analysis as in [52, 53].

To compute the saddle point of (2.17), we first maximize (2.17) over the sink flows pi(x),

i ∈ B ∪ L2, subject to (2.13), which gives rise to

ui(x) ≥ 0 , i ∈ B ∪ L2 ;

then maximize (2.17) over the free source flows po(x) and pC(x), which results in

uC(x) + uB(x) = 1 , uC(x) −
(
us + um + ub

)
(x) = 0 ;

and maximize (2.17) over the spatial flows qi(x), i ∈ L1 ∪ L2, subject to (2.14), which directly

amounts to the sum of the weighted total variation functions of ui(x), i ∈ L1 ∪ L2. Through

simple computation and reorganization, then the convex relaxed POP model (2.11) follows.

Therefore, we have

(2.12) ⇐⇒ (2.17) ⇐⇒ (2.11) .
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The proposition is proved.

2.2.3 Hierarchical Continuous Max-Flow Algorithm

By Prop. 2.2.1, it is easy to see that the convex relaxed POP model (2.11) can be solved

equally by computing the continuous HMF model (2.12). Moreover, as shown in the proof

of Prop. 2.2.1, the labelling functions ui(x), i ∈ L1 ∪ L2, act as the optimum multipliers to

the respective flow conservation constraints of (2.15) and (2.16), which derives the new hier-

archical continuous max-flow algorithm proposed in this section through the modern convex

optimization technique [54].

The hierarchical continuous max-flow algorithm enjoys numerical advantages in that it

successfully avoids directly tackling non-smooth total-variation functions in the energy of the

convex relaxed POP model (2.11) by the projections to some simple convex sets; in addition,

it also implicitly adapts the labelling constraints (2.8) and (2.9) into the introduced flow con-

figurations (as illustrated in Fig. 2.2).

Clearly, the primal-dual optimization problem (2.17) is equivalent to the HMF model (2.12),

where the labelling functions ui(x), i ∈ L1 ∪ L2, work as the multipliers to the linear equality

constraints (2.15) and (2.16) of flow conservation, and the energy function of (2.17) is just the

associated Lagrangian function of the flow-maximization problem (2.12) constrained by flow

conservations (2.15) and (2.16).

Hence, by the theory of augmented multiplier algorithms [54], an efficient continuous HMF

algorithm can be derived, which iteratively optimizes the following augmented Lagrangian

function:

max
p,q

min
u

Lc(u; p, q) := L(u; p, q) −
c
2

∑
i∈L1∪L2

‖Gi‖
2 ,

subject to the flow capacity constraints (2.13) and (2.14), where L(u; p, q) is the Lagrangian

function (2.17) associated with the continuous HMF model (2.12).

The HMF algorithm explores the following steps at each k-th iteration:
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• Maximize Lc(u; p, q) over the spatial flows |qi(x)| ≤ g(x), i ∈ L1 ∪ L2, while fixing the

other variables (u; p)k, which amounts to

qk+1
i := arg max

|qi(x)|≤g(x)
−

c
2

∥∥∥div qi − Fk
i

∥∥∥2
,

where Fk
i (x), i ∈ L1 ∪ L2, is directly computed from the fixed variables.

This can be computed by the gradient-projection iteration:

qk+1
i = Proj|qi(x)|≤g(x)(q

k
i + τ∇(div qk

i − (Fk
i )) ; (2.18)

where τ > 0 is the step-size for convergence [55].

• Maximize Lc(u; p, q) over the source flow po(x), while fixing the other variables (u; pi, q)k,

which amounts to

(po)k+1 := arg max
po

∫
Ω

po dx −
c
2

∑
i∈{B,C}

∥∥∥po − Jk
i

∥∥∥2
,

where Jk
i (x), i ∈ {B,C}, is directly computed from the fixed variables. This can be solved

exactly by:

(po)k+1(x) =
(
Jk

B(x) + Jk
C(x) + 1/c

)
/2 . (2.19)

• Maximize Lc(u; p, q) over the cardiac flow pC(x), while fixing the other variables (u; po, pB,s,m,b, q)k,

which amounts to

(pC)k+1 := arg max
pC

−
c
2

∑
i∈C∪L2

∥∥∥pC − T k
i

∥∥∥2
,

where T k
i (x), i ∈ C ∪ L2, is directly computed by the fixed variables. This can be solved

exactly by:

(pC)k+1(x) =
1
4

∑
i∈C∪L2

T k
i (x) . (2.20)
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• Maximize Lc(u; p, q) over pi(x) ≤ ρi(x), i ∈ B ∪ L2, while fixing the other variables

(u; po, pC, q)k, which amounts to

(pi)k+1 := arg max
pi(x)≤ρi(x)

−
c
2

∥∥∥pi − Hk
i

∥∥∥2
,

where Hk
i (x), i ∈ B∪L2, is directly computed from the fixed variables. This can be solved

exactly by:

(pi)k+1(x) = min(Hk
i (x), ρi(x)) . (2.21)

• Update the labelling functions ui(x), where i ∈ L1 ∪ L2, by

uk+1
i = uk

i − c Gk
i (x) , i ∈ L1 ∪ L2

where Gk
i (x), i ∈ L1 ∪ L2, stands for the respective flow residue function.

Experiments have shown, that a single gradient-projection step (2.18) is needed to achieve

convergence, greatly improving numerical efficiency. After convergence, ui(x) can be dis-

cretized by determining a maximum of ui(x) across i = 1 . . . n.

2.3 Experiments

2.3.1 Study Subjects and Image Acquisition

Study subjects were recruited for the CMCR program at Robarts Research Institute of West-

ern University (London, ON) during which they received coronary CE-MRI examination us-

ing a whole-heart, respiratory navigated, 3D inversion-recovery gradient echo pulse sequence

(Siemens 3T Trio, Erlangen, GER) during and 30 minutes following infusion of 0.2 mmol/kg

Gadovist (Bayer, Toronto, ON) (see details in Section 3.2.1). 35 subjects presenting with my-

ocardial infarction and 15 subjects with surgically corrected TOF were imaged according to
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this protocol which was approved by the Research Ethics Board of Western University, after

receiving written consent.

Table 2.3.1 shows the parameters of the imaging protocol. One patient exhibiting LV scar

and one patient with TOF were visually uninterpretable due to severe imaging artifacts and had

to be excluded for quantitative analysis.

Acquisition Parameter Field
Manufacturer Siemens Medical
Model MAGNETOM Trio w/ Tim
Field strength 3 Tesla
Echo Time 1.3 ms
Flip angle 20◦

Pixel Spacing 1.3 x 1.3 mm
Slice Thickness 1.3 mm
Pulse Sequence Inversion-recovery gradient echo

Table 2.2: Imaging Parameters for 3D WH LE-MRI

2.3.2 Interactive Segmentation Pipeline

Figure 2.3: Proposed interactive segmentation pipeline. A user interactively seeds and com-
putes segmentation results until the there the result is satisfactory (visual agreement).

We developed a graphical user interface in C++ (see Fig. 2.4) with open source libraries
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Qt (Qt Development Frameworks, Oslo, NOR), VTK and ITK (Kitware Inc, Clifton Park, NY)

for interactions with the image data, and implemented the proposed optimization algorithm on

a parallel computing architecture (CUDA, NVIDIA Corp., Santa Clara, CA) for a significant

computing speed-up and best possible interactivity. The user has access to standard image

visualization features such as window-level, opacity sliders for label and a 2D brush tool.

Additionally, a multi-planar reconstruction view is available for the user to display a surface-

rendered resulting scar volume and quickly spot misclassifications. With the help of the brush

tool, the user can sample intensities within each region of Ri, i ∈ B ∪ L2 on three orthogonal

slice views, and calculate the respective 64-bin normalized histogram ωi(I(x)).

We obtain the cost function from the computed histograms with a log-likelihood calcu-

lation [51], i.e. ρi(x) = − log ωi(I(x)). Additionally, we use the user input seeds as hard

constraints, providing the ability to interactively correct for intensity inconsistencies, such as

artifacts or uncertain regions and give the user end-control over the results.

The label ls, representing the non-viable scar tissue, is subsequently refined to all connected

components containing seeds (see Fig. 2.3 ’Connected component refinement’). This step is

different from the post-processing morphological operations described in [18] and merely en-

sures that only regions annotated with seeds are classified as scar tissue while other high inten-

sity regions (for example from the valvular apparatus or epicardial fatty tissue) are excluded.

It reduces user interactions required to account for false positives and is intended to reduce

the overall time spent with user interactions.

In the experiments, the total variation penalties g(x) in (2.11) were given depending the

local image edge information, such that g(x) = λ1 + λ2 exp(−λ3|OI(x)|2), where λ1,2,3 ≥ 0 can

be adjusted by the user to improve segmentation results. Values are limited from 0.05 - 1. and

defaulted to λC,B
1 = 0.35, λC,B

2 = 0.5, λs,m,b
1 = 0.15 and λs,m,b

2 = 0.5. λ3 was fixed to the value of

10, heuristically determined to be appropriate for the applied images.
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Figure 2.4: Graphical user interface with 2D seeds in orthogonal slice views for segmentation:
RB (grey), Rb (magenta), Rm (cyan) and Rs (yellow).

2.3.3 Comparative Experiments

Studies found in the current literature (see Table 2.1.1) utilize model- or atlas-based segmen-

tations to limit the search for scar tissue to the myocardium. To minimize the methodological

bias we employed 3D manual expert constraint segmentations to simulate such model- or atlas-

based approach without bias of the respective method. Given myocardial segmentations, the

scar can be extracted by threshold-based methods such as a FWHM or an STRM approach. To

obtain a stable maximum the user marks a hyper-enhanced region of interest and scar tissue is

subsequently determined by ≥ 50% of the obtained maximum [56]. In the case of STRM, the

user selects a region of remote viable myocardium and the scar is thresholded by an obtained

mean +X standard deviations (SD). For our comparative accuracy experiments, we calculate

results for FWHM, STRM +3SD and STRM +6SD.
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2.3.4 Validation metrics

To assess the performance of the proposed algorithm, we compared our results against single-

user expert manual segmentations. We chose region-, volume- and surface-based measures to

determine the accuracy and reproducibility of the method and compared its performance on

datasets presenting with LV scar tissue with the FWHM and STRM methods, respectively.

Regional metric

We used the Dice similarity coefficient as a measure of overlap of compared regions, repre-

senting the percentage of true-positives identified by the tested method.

DS C =
2(RM ∩ RA)

RM + RA
, (2.22)

RM defines the manually segmented region and RA is the region obtained from the algorithm

output.

Surface-based metrics

As surface-based metric we used root-mean-squared-error (RMSE) from vertex points of iso-

surfaces generated from the label maps of the algorithm output and the manual segmentations:

RMS E =

√√
1

Nm

Nm∑
i=1

d(mi, A)2 , (2.23)

where mi is the set of manual vertex points {mi : i = 1, ...,Nm}, A = {ai : i = 1, ...,NA} the set of

the algorithm output and d the Euclidean distance in mm. Additionally, the Hausdorff distance

(HD) is calculated to measure the maximum distance in a dataset:

HD = max
i∈[1,Nm]

{d(mi, A)}, (2.24)
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Volume-based metric

A total volume error δVE = VA−VM and percentage volume error (δVP) serves as volume-based

measure.

δVP =
(VA − VM)

VM
× 100% (2.25)

Additionally we compute absolute values of these two metrics to better reflect the deviation

from the manually segmented gold standard.

2.3.5 Operator variability

A randomly sampled subset of the database was used to estimate inter- and intra-operator vari-

abilities. This subset includes five datasets from NLV and five from NRV which was repeatedly

segmented three times by two users. To minimize the systematic bias, we let one user U1 seg-

ment the entire database manually to establish a gold standard segmentation, while two other

users U2 and U3 were testing all compared methods blindly. The resulting segmentations are

subject to accuracy and operator variability assessment. We calculate an Intraclass correlation

coefficient (ICC) and a coefficient of variation (CV) from the operator variability results to

estimate variability within and between users.

2.3.6 Effect of user interaction

Additionally, we conducted experiments to demonstrate the effects of repeated user interac-

tion and visual inspection of the proposed method to characterize its bias. For this purpose,

a user (U1) was asked to segment a subset of 10 datasets of NLV and record the segmentation

result for each interaction (the placement of seeds and subsequent HMF computation is con-

sidered an interaction) with the interface. We calculate a DSC and RMSE for each of the first

five interactions to determine the intermediate accuracy and compare it to FWHM and STRM

methods.
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Figure 2.5: Intermediate results after one (magenta, left) and three recomputations (magenta,
right), final algorithm result after 5 recomputations (cyan) with the proposed method and man-
ual expert segmentation (yellow). Accompanying slice views show the respective label on
transverse (top), sagital (middle) and coronal (bottom) cut planes.

2.4 Results

3D LE-MR imaging protocols were completed for all 50 patients. Image quality was scored

acceptable in 34 of 35 patients presenting with LV scar and 14 of 15 patients with TOF. Two

cases were excluded due to severe image artifacts related to respiratory gating and diaphragmal

ghosting, respectively. Fig. 2.5 depicts intermediate results with progressive user interaction

on an example dataset. Fig. 2.6 shows results of all compared methods and demonstrates draw-

backs of each techniques in this example dataset. The proposed HMF method overestimates

the scar volume endocardially (Fig. 2.6, row 3, column 1), while FWHM and STRM +6SD fail

to identify scar (Fig. 2.6, row 4&6, column 2&3) and STRM +3SD, generally overestimates

the scar volume and additionally being prone to respiratory artifacts (Fig. 2.6, row 5).

2.4.1 Segmentation Time

Segmentation time[min]
HMFLV 6.5 ± 2.3
HMFRV 9.4 ± 3.2
Myocardial constraint segmentations 54.7 ± 17.6
Manual scar segmentations 42.0 ± 16.4

Table 2.3: Segmentation time [min]

Table 2.3 shows the average time in minutes to complete the respective tasks. HMFLV

segmentation times decreased in average from those reported in [41]. All segmentations were
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performed on a Windows workstation with 3.33 GHz Xeon processors (Intel, Santa Clara,

CA) with 48 GB RAM and a NVIDIA Tesla C2070 GPU. For each max-flow recomputation,

the time required for calculation of the data term was less than 1.4s, less than 1.1s for the

calculation of the regularization weights and less than 12s in average for the CUDA-based

continuous max-flow optimization.

2.4.2 Accuracy

DSC (%) RMSE (mm) HD (mm)
LV HMF 76.0 ± 3.6 1.02 ± 0.29 10.62 ± 6.37

FWHM 58.9 ± 13.7 5.35 ± 8.00 54.20 ± 27.21
STRM +3SD 53.5 ± 17.0 16.41 ± 11.32 74.13 ± 15.42
STRM +6SD 68.0 ± 12.7 7.74 ± 9.31 67.95 ± 18.26

RV HMF 71.3 ± 4.5 0.70 ± 0.15 8.12 ± 3.74

Table 2.4: Accuracy results for NLV and NRV . Dice Similarity coefficient (DSC), root-mean-
squared error (RMSE), Haussdorff distance (HD)

|δVE| (ml) |δVP| (%) δVE (ml) δVP (%)
LV HMF 4.05 ± 3.58 16.97 ± 13.46 3.36 ± 4.25 12.91 ± 17.49

FWHM 12.77 ± 14.81 39.81 ± 25.83 −11.99 ± 15.47 −32.48 ± 34.82
STRM +3SD 34.57 ± 14.68 229.57 ± 259.32 34.57 ± 14.68 229.57 ± 259.32
STRM +6SD 8.13 ± 6.46 45.14 ± 48.89 2.20 ± 10.23 27.69 ± 60.81

RV HMF 1.02 ± 1.20 11.43 ± 12.64 0.90 ± 1.30 8.86 ± 14.69

Table 2.5: Accuracy results for NLV and NRV . Total volume errors (δVE) and volume percentage
errors (δVP)

The mean and standard deviations of the metrics described in Section 2.3.4 for all methods

can be found in Tables 2.4 & 2.5. The proposed algorithm outperformed the comparative

methods in all metrics for all NLV . The mean RMSE plus one standard deviation for both NLV

and NRV was within the voxel resolution of 1.3mm. The DSC reflecting the true-positives of

identified scar tissue was 76.0±3.6% and 71.3±4.5% respectively. The DSC metric however is

biased towards volume size, i.e. larger regions of interest generally yield higher DSC overlaps.
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Pearson r 95%-CI p-value
LV HMF .987 0.974 − 0.993 < 0.001

FWHM .602 0.336 − 0.779 < 0.001
STRM +3SD .856 0.731 − 0.925 < 0.001
STRM +6SD .851 0.723 − 0.923 < 0.001

RV HMF .989 0.978 − 0.995 < 0.001

Table 2.6: Pearson’s correlation coefficients and confidence intervals for scar volumes

This is reflected in the lower DSC for NRV , where there are typically smaller scar regions, with

simultaneously lower mean RMSE surface error.

Pearson correlations were calculated with SPSS 20 (IBM Corp., Armonk, NY). Table 2.6

shows the correlation coefficient and 95% confidence intervals of volumes of the proposed

algorithm and comparative methods with the manually segmented volumes. All results were

considered significant when the probability of making a type I error was less than 5% (p <0.05).

2.4.3 Operator variability

To assess the inter- and intra-operator variabilities, we calculated the CV to estimate the vari-

ability relative to the mean of the repeated segmentation with the proposed method. Table 2.7

also shows the calculated ICC, a single measure of absolute agreement using a two-way mixed

study.

LV RV

UID CV[%] ICC[0,1] DSC[%] CV[%] ICC[0,1] DSC[%]

U2 6.52 0.923 77.5 ± 1.7 8.59 0.984 71.2 ± 3.8
U3 5.76 0.938 72.8 ± 3.6 9.86 0.978 66.0 ± 3.9

Inter 8.70 0.941 76.2 ± 2.6 13.0 0.983 69.4 ± 4.6

Table 2.7: Inter- and intra-observer variability results for the HMF algorithm. Coefficient of
variation (CV), Intra-class correlation coefficient (ICC) and Dice Similarity Coefficient (DSC)
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Figure 2.6: Segmentation results on orthogonal slice views (column 1-3) and surface rendered
results (column 4). From top to bottom, scar segmentation results (white) and myocardium
(red) : a) original image, b) expert manual segmentation, c) HMF, d) FWHM, e) STRM+3SD,
f) STRM+6SD.
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Figure 2.7: HMF segmentation accuracy results on 10 datasets in terms of Dice Coefficient
(DSC) and root mean squared error (RMSE) in mm with increasing user interaction.

2.4.4 Effect of user interaction

Table 2.8 states the resulting DSC and RMSE with progressive user interactions and the corre-

sponding comparative FWHM and STRM methods on the 10 dataset of NLV . Figure 2.7 depicts

the box plots demonstrating that two datasets presented as outliers, which the user was able to

correct for after 4 interactions.

Interactions DSC (%) RMSE (mm)
LV HMF 1 54.9 ± 17.3 3.91 ± 5.24

2 65.7 ± 14.3 3.02 ± 4.90
3 68.7 ± 14.0 2.76 ± 4.79
4 71.4 ± 6.7 1.44 ± 0.62
5 73.4 ± 4.3 1.39 ± 0.62

done 77.6 ± 3.3 1.07 ± 0.18

FWHM 52.4 ± 10.2 4.53 ± 9.24
STRM +3SD 63.0 ± 16.1 13.34 ± 10.95
STRM +6SD 72.1 ± 8.9 8.08 ± 11.60

Table 2.8: Accuracy results with increasing user interactions on 10 datasets of NLV for HMF
and comparative accuracy results on these data for FWHM, STRM +3SD and STRM +6SD
stated as Dice Similarity coefficient (DSC), root-mean-squared error (RMSE).



www.manaraa.com

Chapter 2. Interactive Segmentation of Scar Tissue from LGE CMR 76

2.5 Discussion

We developed and validated a new semi-automated approach to segmenting myocardial scar

tissue from 3D WH LE-MRI, based on a novel POP model, which essentially enforces the

anatomically consistent layout of cardiac regions to constrain searching the scar tissue bound-

aries and properly utilizes the distinct intensity appearance models of cardiac regions. This

method can be directly applied to LE-MRI without relying on additional imaging modalities

or prior segmentations, thus reducing secondary influences and additional potential sources of

errors. This challenging combinatorial optimization problem is solved efficiently by convex

relaxation, for which a novel continuous HMF model is proposed.

In addition, the continuous HMF algorithm is implemented on commercially available

graphics hardware, which allows a rapid 3D multi-region segmentation and fast refinements

of the three cardiac regions. The user can easily retain the overall control of the entire segmen-

tation process. We compare the proposed algorithm with the FWHM and STRM approaches,

which are widely employed in the literature, in terms of efficiency and accuracy.

2.5.1 Segmentation Time

The average segmentation time by the proposed method was 6.5 minutes for NLV and 9.4 min-

utes for NRV respectively. We initially reported a greater mean segmentation time for a subset of

NLV in [41], which might have been due to a learning effect with using the interface or the sam-

ple not being representative in terms of scar extent and image quality. The higher segmentation

times for NRV is due to the fact that the scar after surgically corrected TOF is generally smaller

in volume and the fibrotic tissue layer thinner, thus requiring more accurate seed placement

with the required lower regularization.
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2.5.2 Accuracy

The proposed approach outperformed the comparative methods in all accuracy metrics. The

mean RMSE for NLV was 1.02±0.29mm and for NRV 0.70±0.15mm, both of which were lower

than the LE-MRI voxel dimensions of 1.3x1.3x1.3mm and demonstrated excellent agreement

between the results with the gold standard in subvoxel range. The increased RMSE for NLV can

be due to intensity inconsistencies from diaphragmatic ghosting artifacts, small inclusions of

fibrotic papillary muscles, chordae tendineae or the valve apparatus, which are not all present in

the right ventricular outflow tract (RVOT) scars found in TOF patients. This is also reflected in

the HD distance results of NLV and NRV . The increased HD errors in the comparative methods

result from the use of a simple intensity threshold to distinguish between viable and non-

viable tissue, that does not account for scar contiguity and image artifacts. Despite the low

surface errors, the maximal average DSC over all methods compared was 0.76 for LV HMF

segmentations, due to the typically thin and elongated appearance of myocardial scar and the

known bias of the DSC towards volume size.

The clinically relevant volume errors reflect the results of the other metrics well. Pear-

son correlation of segmented volumes correlated well with manually segmented scar (rLV =

0.987, p < 0.001 and rRV = 0.989, p < 0.001). The comparative threshold-based volumes

correlated less with rFWHM = 0.602 (p < 0.001), and rS TRM3 = 0.856 (p < 0.001) and

rS TRM6 = 0.851 (p < 0.001), respectively.

Neizel et al [21] reported an average infarct mass of 15 ± 14g versus 19 ± 15g by manual

tracing, resulting in an average 21.05% error on 20 patients. Their calculated concordance

correlation coefficient for scar masses was 0.94. For both NLV and NRV the HMF algorithm

overestimates the volumes by 12.93 ± 17.49% and 8.86 ± 14.69%, which might be due to

regularization weights being set too high.
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2.5.3 Operator variability

The repeatability experiments were performed using the clinically relevant scar volumes. The

high intra-operator ICC values for both NLV and NRV volumes, show that there is a high agree-

ment between users employing the proposed method for volume measurements. The slightly

higher ICC for NRV can be explained again by the presence of image artifacts in the mid-apical

regions of the ventricle. Also the inter-operator ICC strongly suggested that there is low vari-

ability between users based on examined subset.

2.5.4 Effects of user interaction

Experiments determining the bias of repeated visual assessment and correction of seeds by

a user showed that 2 of 10 datasets initially did not yield high accuracy results. These low

results were due to respiratory ghosting artifacts and due to endocardial scar ’leaking’ into the

blood pool due to incorrect or insufficient seeding. However, the user was able to correct for

these errors after 4 interactions. These results demonstrate, that user interaction is helpful to

correct for inconsistencies and artifacts in the image and that after 5 interactions the proposed

method was able to outperform all comparative methods in each dataset without requiring prior

myocardial segmentation masks.

2.5.5 Comparative Methods

Model- or atlas-based segmentation methods

Because of excessive total time requirements, manual expert constraint segmentation is not an

option for 3D WH LE-MRI. Two approaches found in the literature propose methods for scar

segmentation on these images: Barbarito et al. [22] proposed an atlas-based and Neizel et al.

[21] a model-based segmentation technique with subsequent intensity thresholding on the my-

ocardial region. The FWHM Vp error shows that this technique is generally underestimating

the scar volume. Since the scar can be modelled as a Gaussian distribution [12], the increased
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sample size in 3D WH LE MRI leads to a more volatile maximum, hence a less reliable in-

tensity threshold. In contrast, since the STRM-based methods do not rely on a single intensity

maximum, their performance in terms of DSC is higher. In particular the STRM+6 method

yields the lowest absolute volume error and highest DSC of all comparative methods. How-

ever, as shown in Figure 2.6 it can underestimate hyperenhanced regions. Accuracy results in

Tables 2.4, 2.5 and 2.6 show that the proposed HMF-based method outperforms an idealized

constraint segmentation and thresholding approach. Further, the example visual results in Fig-

ure 2.6 suggest that a simple thresholding technique might be insufficient to deal with artifacts

and intensity inconsistencies commonly found in WH LE-MRI.

Discrete Graph-Cut Methods

The Potts modelled multi-region image segmentation problem can be also formulated over a

specified discrete graph and solved by graph-cuts, for example alpha-expansion [57].

Such a discrete optimization approach, however, is known to have the following disadvan-

tages: I) Grid bias is a metrication error that occurs due to the nature of the discrete graph

resulted staircase-like boundaries; II) segmenting a 3D medical image often results in a huge

3D discrete graph and a high memory load and the popular approaches, such as the Boykov-

Kolmogorov algorithm [57], cannot be fully implemented on parallel computing platforms, so

cannot be accelerated to meet the requirements of most 3D medical imaging tasks.

On the other hand, the recently developed convex-relaxation technique, as proposed here,

successfully avoids the existing difficulties of the classical graph-cuts and obtains a high nu-

merical performance in practice. Additionally, the HMF regularizes each hierarchy level sepa-

rately, allowing to account for the variations in smoothness of different objects, with minimal

additional computational burden to a Potts model approach.
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2.6 Conclusions

In conclusion, the proposed semi-automated algorithm is able to accurately segment myocar-

dial scar tissue from WH LE-MR images without relying on constraint segmentations introduc-

ing additional sources of error. The avoidance of constraint segmentations opens its applica-

tions to other regions such as the right ventricle in patients presenting with scar after surgically

repaired TOF. We demonstrated that, the HMF-based algorithm is able to outperform methods

commonly found in the literature in terms of accuracy. In future studies, a generalized form of

the hierarchical max-flow principle can potentially be adapted to solve other problems in med-

ical image segmentation, where there is often prior knowledge of the appearance of anatomic

regions and individual regularization of regions/labels is required. Lastly, the volume relation-

ship of scar quantified from 2D and 3D LE-MRI remains unclear. Chapter 3 aims at shedding

light on this missing link.
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Chapter 3

Comparison of Semi-automated Scar

Quantification Techniques Using

High-Resolution, 3-Dimensional

Late-Gadolinium-Enhancement Magnetic

Resonance Imaging

3.1 Introduction

Over the past decade, LE cardiac magnetic resonance (CMR) imaging has established itself

as a preferred imaging tool for the characterization of myocardial fibrosis or ’scar’ [1]. While

conventionally performed using sequential 2D image acquisition during separate breath holds,

This Chapter is adapted from an article currently in revision. M. Rajchl, J. Stirrat, M. Goubran, J. Yu,
D. Scholl, T.M. Peters and J.A. White (2014). Comparison of Semi-automated Scar Quantification Techniques
Using High-Resolution, 3-Dimensional Late-Gadolinium-Enhancement Magnetic Resonance Imaging. The Inter-
national Journal of Cardiovascular Imaging.
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free-breathing 3D WH LGE imaging techniques have now become available in the clinical set-

ting. Further, improvements aimed at substantial reduction in image acquisition time favour

3D free-breathing LE as a practical alternative to 2D breath-held acquisition [2, 3, 4, 5]. This

migration provides capacity for superior volumetric characterization of myocardial scar at

isotropic resolutions approaching 1mm3, affording high-quality multi-planar reconstruction,

improved anatomic registration, and the potential for accurate volumetric scar quantification

and modelling [6, 7, 8, 9, 10, 11]. Such advancements have been primarily pursued to sup-

port expanding interest in image-guided therapy, particularly related to the use of scar-based

modelling to guide electrophysiology-based procedures, such as; CRT and catheter-based ab-

lation of both ventricular and atrial tachyarrhythmia [6, 7, 8, 9, 10, 11, 12, 13]. A superiority

of WH LE over conventional 2D LE sequences has been shown by several recent studies,

reporting an improvement in myocardial lesion discrimination, scar signal intensity (SI) and

image contrast [14, 15]. In addition, improved image quality [15] and superior diagnostic

scores have been attested to this approach [14, 16]. Despite such advantages, the capacity

to segment myocardial scar signal from isotropic 3D datasets remains challenging and, while

2D signal segmentation techniques have been explored for their accuracy and reproducibil-

ity [17], no such studies have explored 3D imaging approaches. Given inherently different

signal-to-noise characteristics attributed by differing k-space ordering, smaller voxel size, and

altered signal gradients, the performance of these techniques cannot be assumed to be simi-

lar. Further, as existing segmentation techniques commonly sample reference tissue (healthy

or scarred) these values will be altered by an expansion in voxel count and reduction in partial

volume effects (particularly in the z-axis), leading to a more volatile (i.e. higher) peak signal

and lowering of standard deviation estimates. As such, novel standards for scar segmentation

using 3D datasets are required. In this study, we conduct a series of experiments to compare

semi-automated segmentation methods and determine the optimal technique for quantification

of ischemic myocardial scar using 3D isotropic LE imaging. Complementary to the work by

Flett, et al. establishing standards for 2D LE segmentation [17], we systematically compare all
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known segmentation techniques for both their accuracy and reproducibility. Comparisons are

made against the gold standard of expert manual 3D segmentation and cross-correlation of all

techniques to conventional 2D LE scar quantification is performed.

3.2 Methods

3.2.1 Patient population

Thirty-five consecutive patients with known ischemic cardiomyopathy, defined as prior my-

ocardial infarction and an LV ejection fraction <50%, referred for LE CMR at the Cardio-

vascular MRI Clinical Research (CMCR) Centre were recruited. Patients with standard con-

traindications to cardiac magnetic resonance (CMR) or with a glomerular filtration rate ≤ 30

ml/min/1.73 m2 were excluded. All patients provided written informed consent, and the study

protocol was approved by Western Universitys Research Ethics Board. Image acquisition

All patients underwent an imaging protocol using a 3-Tesla CMR scanner (TRIO, or Ve-

rio, Siemens Medical Systems, Erlangen, Germany) using a 32-channel phased-array radiofre-

quency coil. Cine functional imaging was performed in a standard fashion using a steady

state free precession based (SSFP) pulse sequence (TrueFISP) in sequential short-axis slices

from the atrioventricular annulus to the left ventricular apex at 10 mm intervals, and in long-

axis orientations (slice thickness 6 mm, gap 4 mm, echo time 1.5 ms, repetition time 3.0 ms,

flip angle 50◦). A 3D whole-heart, inversion-recovery gradient echo pulse sequence with a

respiratory navigator pulse placed over the right hemidiaphragm was used to obtain both an

early (coronary-enhanced) and late (scar-enhanced) dataset (voxel size 1.3 x 1.3 x 1.3 mm3,

resampled to 0.625 x 0.625 x 1.3 mm3, echo time 1.3 ms, flip angle 20◦, integrated parallel

acquisition technique (iPAT) 2). Fat saturation was employed to suppress pericardial fat sig-

nal. Imaging volumes were prescribed in the transverse plane from the aortic arch to below

the most inferior aspect of the heart (slab thickness 120 to 144 slices) based on multiplanar

scout images. Adjustment of trigger delay and number of segments was performed to maintain
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image acquisition between the onset and termination of cardiac standstill, as determined from

the 4-chamber cine. For coronary-enhanced imaging, an intravenous infusion of 0.2 mmol/kg

gadolinium (Gadovist, Bayer Inc., Toronto, Ontario, Canada) was given at 0.3 ml/s, followed

by 40 ml of saline at the same rate. Imaging was initiated 25 sec following infusion onset,

as previously described [5]. A repeat (scar-enhanced) dataset was then acquired 20 min later,

with adjustment of the inversion time (TI) to provide optimal myocardial signal suppression.

The TI was set at 200 ms for coronary-enhanced imaging and was adjusted for scar-enhanced

imaging (typical range 240 to 280ms). These adjustments were performed using a test-image

slab (10-mm thickness) acquired over the mid-ventricle. A series of standard short-axis 2D

LE images was obtained between coronary-enhanced and scar-enhanced 3D imaging. This

was performed using a standard phase-sensitive inversion recovery pulse sequence (matrix 256

192, slice thickness 6 mm, gap 4 mm).

3.2.2 2-Dimensional scar analysis

Conventional 2D LE images were analyzed according to 5 previously described segmenta-

tion techniques. This included the STRM approach, using thresholds defined at >2SD, >3SD,

>4SD, and >6SD above reference remote myocardium (manually defined), and the FWHM ap-

proach where scar is defined as signal exceeding 50% of the maximal signal intensity for man-

ually labelled scar regions, as previously described [17]. All 2D LE analysis was performed

by a blinded and experienced clinician using commercially available software (CVI 42, Cir-

cle Imaging, Calgary, AB), and was performed using sequential short-axis views (SAX) views.

Manual tracing of the endocardial and epicardial contours was performed followed by the man-

ual exclusion of image artifacts, when present, and labelling of the reference myocardium (on

all slices) and scar region. Total scar volume was reported in ml and as a percentage of LV

volume for each of the five segmentation techniques.
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3.2.3 3-Dimensional scar analysis

All 3D datasets were analyzed in accordance with the same five thresholding techniques re-

ported for 2D imaging, and also using a new 3D segmentation approach. Similar to 2D image

analysis demarcation of the endocardial and epicardial borders is required. As the manual seg-

mentation of endocardial and epicardial borders on isotropic datasets is impractical to perform

we used a locally-developed, interactive segmentation algorithm to identify these myocardial

borders [18], followed by manual refinement by an experienced cardiac imager (J.A.W). Valvu-

lar tissue, papillary muscles, and/or mural thrombus, if present, were carefully excluded from

the segmentation. User defined regions of interest were placed over reference (normal) my-

ocardium and peak scar signal on a multi-planar reformatted (MPR) image using a 3D brush

tool [19]. Constrained to the myocardium a 3D segmentation was then performed using MAT-

LAB 2010b (MathWorks, Natick, MA) to identify myocardial scar using both the STRM and

FWHM techniques. Incrementally, a novel semi-automated technique for the segmentation of

myocardial scar from 3D LE images was tested. This technique is presented in Chapter 2 and

based on HMF optimization [20, 21] and does not require prior segmentation of myocardial

borders. This approach identifies scar based its unique signal spectrum relative to both the my-

ocardium and blood pool, requiring a user to interactively sample each tissue via brush strokes.

Again, scar volumes were reported in units of ml and also expressed as a percentage of total

LV volume.

3.2.4 Inter-observer and Intra-observer Reproducibility

Inter-observer and intra-observer reproducibility for scar volume measurements was performed

for each of the 3D segmentation techniques. This involved a first investigator performing scar

segmentation for all cases on two separate occasions, with a second investigator repeating the

same measurements in random order to provide for inter- and intra-observer variability testing,

respectively.
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3.2.5 Statistical Analysis

Continuous variables are expressed as mean ± SD, while medians with 25th and 75th per-

centiles are provided for non-normally distributed data. Categorical variables are expressed

as simple proportions. To validate the accuracy of 3D scar quantification techniques several

analyses are reported. First, the Pearson correlation coefficients of total scar volume estimates

for each of the respective techniques are reported against the gold standard of expert manual

segmentation. Second, Bland-Altman analysis is reported to express the mean bias of each

technique versus the gold standard. Absolute volume differences (δVE) are similarly reported.

Third, the Dice Similarity coefficient is calculated as a measure of mean region overlap between

each techniques segmented region (RA) and the gold standard segmented region (RB). All 3D

quantification techniques are compared against conventional 2D scar analysis techniques in

terms of their bias using Bland-Altman analysis.

To assess intra- and inter-observer variability, the ICCs are calculated on the repeatedly

quantified scar volumes. All analyses were performed using SPSS 20 (IBM Corp., New York)

and Graph Pad Prism 6 (GraphPad Inc., La Jolla, CA).

3.3 Results

All thirty-five patients completed the imaging protocol. Baseline patient characteristics are

shown in Table 3.1 and show a mean age of 51.5 ± 12.6. The mean heart rate at time of

imaging was 67.1 ± 11.2 b/min.

3.3.1 Baseline CMR Characteristics and 2D Scar Segmentation Analysis

The mean age and ejection fraction of the population was 51.5 ± 12.6 years and 32.1 ± 12.7%,

respectively. By conventional 2D LE, image scar segmentation the mean total scar volume was

23.1 ± 12.3% (range 1.2 to 43.2%) using an STRM >5SD threshold and 19.2 ± 8.5% (range

0.1 to 32.3%) using the FWHM technique.
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Characteristics Total population (N = 35)
Age (years) 51.5 ± 12.6
Male, n(%) 29 (82.8%)
BMI (kg/m2) 28.2 ± 4.7
HR (bpm) 67.1 ± 11.2
GFR (ml/min) 83.5 ± 20.9
Prior revascularization, n (%) 9 (25.7%)
LV EF (%) 32.1 ± 12.7
LV EDV (ml) 228.7 ± 69.3
LV ESV (ml) 160.5 ± 72.5
RV EF (%) 51.2 ± 11.7

Table 3.1: Baseline characteristics of all included patients. Plus-minus values are means ± stan-
dard deviation. Abbreviations used: BMI: body mass index, HR: heart rate, GFR: glomerular
filtration rate, LV EF: Left ventricular ejection fraction, LV EDV: Left-ventricular end-diastolic
volume, LV ESV: Left-ventricular end-systolic volume, RV EF: Right-ventricular ejection frac-
tion.

3.3.2 3D Scar Segmentation Analysis

3D LE image quality was scored as good or excellent in 34/35 (97%) of patients. One pa-

tient demonstrated severe breathing artifacts, introduced by coughing during acquisition, and

required exclusion from final analysis. A typical example of 3D LE imaging data is provided

in Figure 3.1. Gold standard manual 3D segmentation showed a mean total scar volume for

the entire population of 11.4 ± 6.6% (range 1.1 to 24.8%). Pearson correlation estimates of

total scar volume for each 3D segmentation technique versus the gold standard are shown in

Table 3.2. The highest correlation was seen for the HMF technique with a correlation coef-

ficient of 0.99 (p <0.0001), followed by the STRM >5 SD technique (r= 0.92, p <0.0001).

The lowest mean bias among all techniques was seen for the STRM >6 SD technique (2.11 ±

10.23, 95% CI -17.85 to 22.25) (Table 3.2), however the HMF method presented with lower

bias SD and tighter CI (3.36 ± 4.25, 95% CI -4.97 to 11.68). The highest DSC and lowest ab-

solute volume difference (δVE) was similarly found with the HMF technique (76±3.6% and 4.1

± 3.6 ml respectively). The next best performing 3D segmentation technique was STRM >6

SD (DSC 68.0±12.7% and δVE 8.1±6.5 ml). Respective results for all 3D scar quantification

experiments are reported in Table 3.2. An example of all segmentation technique results in a
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Figure 3.1: Example 3D Late Gadolinium Enhancement (LE) image dataset acquired in a
46yo male referred for recurrent sustained ventricular tachycardia late following myocardial
infarction. Electrophysiologic mapping and curative ablation procedure confirmed a scar re-
entry circuit with an exit site in heterogeneous scar occupying the mid inferoseptal wall. Top
row: Multi-planar reformatted (MPR) images in 4-chamber (A), 3-chamber (B), and short
axis mid-ventricular (B) views. Lower row: Maximum intensity projections (MIP) shown in a
10mm axial slab (D), 30mm axial slab (E), and 100mm anterior-posterior projection (F). The
latter is shown with the cropping of extraneous, non-cardiac signal.

representative patient is shown in Figure 3.2.

3.3.3 3D Inter-observer and Intra-observer Reproducibility

All 3D segmentation approaches showed high intra-observer reproducibility. Intra-observer

ICC values ranged from 0.95 and 0.97, as shown in Table 3.3, with the HMF method having

highest reproducibility (ICC 0.97). Both HMF and FHWM outperformed STRM in terms

of inter-observer reproducibility (ICC 0.95). However, FWHM showed an improved lower

boundary of the 95% confidence interval (0.91).
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Figure 3.2: Example of all 3D scar quantification techniques applied to a dataset with a large,
transmural myocardial infarction of the left anterior descending artery territory. Multi-planar
reformatted results of both manual (gold standard) and all semi-automated scar segmentation
techniques are shown in long axis (column 1) and short-axis (column 2) views. Corresponding
segmentation of 2D LE imaging is shown in column 3. Finally, volume renderings of 3D
segmented scar volumes are shown in column 4.
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Validation metrics Bland-Altman analysis
DSC (%) δVE (ml) Pearson r Bias (SD) 95% CI

FWHM 58.6 ± 13.7 12.8 ± 14.8 0.68* -11.99 (15.47) -42.31 to 18.33
STRM >2SD 43.5 ± 17.0 57.0 ± 20.2 0.85* 56.98 (20.16) 17.47 to 96.5
STRM >3SD 53.5 ± 17.0 34.6 ± 14.7 0.89* 34.57 (14.68) 5.80 to 63.34
STRM >5SD 67.1 ± 12.9 11.3 ± 8.1 0.92* 9.74 (10.03) -9.91 to 29.4
STRM >6SD 68.0 ± 12.7 8.1 ± 6.5 0.90* 2.20 (10.23) -17.85 to 22.25
HMF 76.0 ± 3.6 4.1 ± 3.6 0.99* 3.36 (4.25) -4.97 to 11.68

Table 3.2: Comparison of all 3D scar segmentation techniques against the gold standard
of expert manual segmentation. Mean regional overlap DSC [%], Absolute volume differ-
ence δVE [ml] and Pearson correlation coefficient(r) of segmented volumes are provided. *
p-value<0.0001 STRM = Signal Threshold versus Reference Mean, FWHM = Full Width
Half of Maximum, HMF = Hierarchical Max Flow, SD = Standard Deviation

Reproducibility
Inter-observer ICC [0,1] (95% CI) Intra-observer ICC [0,1] (95% CI)

FWHM 0.95 (0.91-0.97) 0.96 (0.93-0.98)
STRM >2SD 0.76 (0.58-0.87) 0.95 (0.90-0.97)
STRM >3SD 0.80 (0.64-0.90) 0.96 (0.92-0.98)
STRM >5SD 0.84 (0.71-0.92) 0.96 (0.92-0.98)
STRM >6SD 0.83 (0.69-0.91) 0.95 (0.90-0.97)
HMF 0.95 (0.87-0.98) 0.97 (0.94-0.98)

Table 3.3: Inter- and intra-observer reproducibility expressed by Intraclass Correlation Coeffi-
cient (ICC, single measure of absolute agreement) with 95% confidence intervals (CI), reported
for all 3D scar quantification techniques. STRM = Signal Threshold versus Reference Mean,
FWHM = Full Width Half of Maximum, HMF = Hierarchical Max Flow, SD = Standard De-
viation

3.3.4 Comparison of 3D versus 2D LE Scar quantification

A comparison of 3D versus 2D segmentation data is presented in Table 3.4. Compared against

the gold standard of 3D manual segmentation, the 2D STRM >5SD scar segmentation tech-

nique yielded the lowest mean absolute bias (3.6 ± 12.5 ml, 95% CI -20.9 to 28.1), consistent

with it providing the best accuracy for estimation of total 3D scar burden. When comparing 2D

versus 3D approaches of the same segmentation technique a positive bias was evident with 3D

versus the respective 2D approach using STRM-based thresholds, this bias reducing with in-

creasing threshold level (ranging from 47.1 ml at a >2SD threshold down to 7.2 ml at a >6SD

threshold). Conversely, a more modest negative bias was seen with 3D versus 2D FWHM
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3D FWHM STRM >2 SD STRM >3 SD STRM >5 SD STRM >6 SD HMF MANUAL
2D Bias (SD) Bias (SD) Bias (SD) Bias (SD) Bias (SD) Bias (SD) Bias (SD)
FWHM -5.6 ± 14.7 63.4 ± 28.4 41.0 ± 23.5 16.1 ± 18.2 8.6 ± 16.7 9.8 ± 17.6 6.4 ± 15.9
STRM >2 SD -21.8 ± 15.7 47.2 ± 24.5 24.8 ± 19.3 -0.1 ± 14.7 -7.6 ± 14.3 -6.5 ± 11.7 -9.8 ± 11.1
STRM >3 SD -16.5 ± 15.8 52.5 ± 25.2 30.1 ± 19.9 5.2 ± 14.9 -2.3 ± 14.3 -1.1 ± 12.2 -4.5 ± 11.7
STRM >5 SD -8.4 ± 14.7 60.6 ± 26.4 38.2 ± 21.0 13.4 ± 15.3 5.8 ± 14.2 7.0 ± 13.6 3.6 ± 12.5
STRM >6 SD -7.0 ± 14.0 62.0 ± 26.4 39.6 ± 20.7 14.7 ± 14.4 7.2 ± 12.8 8.4 ± 14.1 5.0 ± 12.8

Table 3.4: Comparison of 3D versus conventional 2D Total Scar volume quantification using
all available segmentation algorithms. Results shown represent the mean bias (in mL) and stan-
dard deviation (SD)between the respective techniques, as derived by Bland-Altman analysis.
STRM = Signal Threshold versus Reference Mean, FWHM = Full Width Half of Maximum,
HMF = Hierarchical Max Flow, SD = Standard Deviation

segmentation techniques (5.6 ml). As HMF segmentation is only applied to 3D imaging no

comparison was available for this technique.

3.4 Discussion

3D LE imaging is attractive due to its superior spatial coverage, anatomic registration and ca-

pacity for more accurate volumetric characterization of myocardial scar. For these benefits

to be fully realized, semi-automated quantification techniques with the capacity for efficient

and reproducible scar segmentation are required. This study is the first to systematically com-

pare the accuracy and reproducibility of conventional signal threshold-based techniques for the

quantification of myocardial scar from 3D LE images, and a recent technique not reliant upon

prior boundary tracing.

Our results indicate that, consistent with prior 2D LE scar segmentation studies [17],

higher STRM-based thresholds provide improved accuracy for scar volume estimates. A >6SD

threshold provided the greatest DSC of 76% and lowest δVE of 4.1 ml, whereas a >2SD thresh-

old provided a mean δVE of 57 ml, respectively. While FWHM techniques have been shown

to have high accuracy for 2D LE datasets [17], our findings show this approach performs only

modestly for 3D LE segmentation (DSC of 58.6% and δVE of 14.8 ml). The FWHM technique

showed a systematic under-estimation of myocardial scar volumes (mean bias -11 ml, 95% CI

-14 to 18ml) versus the gold standard. This finding can be explained its sampling of a single
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peak (rather than mean) signal intensity reference value from this Gaussian distributed data (see

[22]). This inherently achieves higher peak estimates when translated to 3D datasets due to a

markedly increased voxel sample size (i.e. more than 7-fold), raising corresponding thresholds

for scar labelling. Further, it must be recognized that 3D LE techniques generate higher SNR of

scarred regions when compared to conventional 2D LE imaging [14], potentially contributing

to the altered performance of the FWHM approach.

The reproducibility of STRM versus FWHM-based scar segmentation approaches has been

well described for 2D scar segmentation [22, 23]. We found similar findings for 3D scar

segmentation with the FWHM technique providing high reproducibility. For example, the ICC

for intra-observer variability was 96% for FWHM versus 95% for STRM >6SD and 95% for

STRM >2SD segmentations, and the ICC for intra-observer variability was 95% for FWHM

versus 83% for STRM >6SD and 76% for STRM >2SD, respectively.

In this study we incrementally tested a recent HMF segmentation algorithm for 3D scar

segmentation. This approach was found to match the superior reproducibility metrics of the

FWHM approach while achieving improved accuracy (DSC of 76.0% and δVE of 4.1ml) rel-

ative to the optimal STRM-based >6SD segmentation approach. Because prior segmentation

of the endocardial and epicardial borders are not required in the HMF technique, its accuracy

and reproducibility are further complemented by marked improvements in workflow efficiency.

For example, we found the time required for myocardial contour tracing and reference tissue

labelling to be 54.7 ± 17.6 and 1.4 ± 0.6 min, respectively. By comparison, the total analy-

sis time using the HMF approach was 6.5 ± 2.3 min, primarily related to the elimination of

semi-automated myocardial boundary segmentation and related manual adjustments.

3.4.1 Limitations

Inter- and intra-observer reproducibility of threshold-based (STRM and FWHM) 3D scar quan-

tification was performed using the same myocardial border constraints, as defined by semi-

automated myocardial segmentation. Therefore, this reproducibility testing focused on the ef-
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fect of manual reference region selection, rather than all aspects of the segmentation pipeline.

This was necessary for study feasibility as the time required for manual adjudication of endo-

cardial and epicardial borders throughout the 3D volume precluded it being done repeatedly

for all 5 threshold-based approaches. However, as this common operation must be performed

in the same fashion prior to each approach, we believe that relative differences in their per-

formance are appropriately represented by this study design. This study investigated the role

of scar quantification in patients with ischemic cardiomyopathy. As such, further validation

work is required for patients with non-ischemic cardiomyopathy. Translation of these findings

to the latter population cannot be recommended. Finally, it must be acknowledged that manual

segmentations of scar signal from 3D LE MRI represents a surrogate of ground truth and that

histological validation (i.e.: animal model design) would be preferred for accuracy estimates.

However, volumetric quantification of complex scar architecture from histopathology poses its

own unique challenges and such techniques are currently unavailable. Further, post-mortem

validation of in-vivo scar volume is incrementally challenged by the disparate respective phys-

iologic states. Accordingly, the manual segmentation of 3D scar architecture remains the most

appropriate gold standard.

3.5 Conclusions

Volumetric quantification of scar from 3D LE datasets is clinically feasible and can be per-

formed using both STRM and FWHM-based signal threshold techniques. Our findings support

that STRM-based segmentation has improved accuracy at higher thresholds (i.e.: >5SD or

>6SD) with acceptable intra- and inter-observer reproducibility. However, while an FWHM-

based approach provides superior reproducibility, it lacks accuracy with systematic under-

representation of both scar volume and architecture. Recent segmentation algorithms, such

as HMF, may be preferred for such datasets with a combined achievement of optimal accuracy

and reproducibility along with a substantial reduction in image processing time. The imple-
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mentation of such image processing tools is required for appropriate exploitation of 3D scar

imaging for the guidance of therapeutic procedures, particularly those reliant upon accurate

representation of scar characteristics.
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Chapter 4

Fast Deformable Image Registration with

Non-Smooth Dual Optimization

4.1 Introduction

Registration of medical images is a challenging task which attempts to spatially align two im-

ages and find the spatial correspondences between the anatomies in each dataset. It becomes

fundamental to many applications in the field of neuroimaging, such as atlas-based image seg-

mentation, quantifying spatial and longitudinal disease patterns and computer-assisted diagnos-

tics. However, it is well-known that the linear image registration, which computes an optimal

affine transformation of one brain image onto another, is often insufficient and fails to account

for anatomical variability and other highly non-linear phenomena. This limitation encouraged

the development of many deformable or non-rigid image registration methods over the past

decade to address these challenges (see Sec. 4.1.2 for a short review).

Of particular note is the application of deformable image registration (DR) to determine

This Chapter is adapted from an article currently in revision. M. Rajchl, J.S.H. Baxter, W. Qiu, A.R. Khan,
A. Fenster, T.M. Peters, and J. Yuan (2014). Fast Deformable Image Registration with Non-Smooth Dual Opti-
mization. IEEE Transactions on Medical Imaging.
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an accurate mapping of an annotated image to new patient data, essential to the atlas-based

image segmentation approach widely-used in neuroimaging [1, 2, 3] and other medical imaging

[4, 5, 6, 7, 8, 9, 10, 11, 12]. Such techniques makes full use of the expert manual segmentations

on a small subset of the image data, avoiding the prohibitive time consumption required for

delineating a large number of images manually.

Often, deformable registration is achieved through the use of mathematical optimization

theory, where an optimizer is used to explicitly maximize a similarity metric, such as mutual

information [13, 14] or cross-correlation [15, 16], or minimize a dissimilarity metric such as

intensity differences, or a neighbourhood descriptor [17]. This approach, however, is a mathe-

matically ill-posed problem and deformation fields can be constructed that achieve the optimal

value of the objective function but do not represent an adequate or even a physically possi-

ble deformation. To address the issue of being ill-posed, a deformable smoothing mechanism

could be added [18], constraints could be placed on the deformation field to prevent undesir-

able features (such as singularities) [16], or the objective function could be augmented with

a regularization metric [19, 20, 21]. These regularization metrics address the ill-posed-ness

problem by rewarding deformation fields for their smoothness, implicitly discouraging highly

non-smooth features rather than placing explicit constraints against them. The benefit of the

latter two is that they can be incorporated directly into the optimization problem being ad-

dressed.

Variational optical-flow based optimization approaches are a subset of deformable registra-

tion techniques, which have been developed as efficient non-rigid medical image registration

methods with improved robustness and lower variability (see [22, 23] for references). Often,

incremental coarse-to-fine frameworks [24, 25] are employed to capture substantial non-rigid

deformations, represented at the coarsest levels, with sufficient smoothness without sacrificing

the accuracy at the finest-resolved levels. In this respect, a partial differential equation (PDE)

diffusion algorithm is often derived with a corresponding first-order gradient-descent solver,

often resulting in slow convergence towards a local optimum.
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Recently, direct convex optimization methods, specifically dual optimization, were success-

fully developed to efficiently solve a wide spectrum of problems in image processing [26, 27]

and have been subject to increasing attention in medical image segmentation [28, 29, 30, 31, 32]

and registration [19, 20, 21]. It provides both a sound foundation in mathematical optimiza-

tion and an efficient numerical algorithm, with the capability of tackling non-smooth energy

function terms. Given convex regularization functions, linearization of the image similarity

measure at each scale results in a convex optimization problem that reflects the local geometry

of the non-convex objective function. Also, with the availability of powerful and inexpensive

graphics hardware and the inherent parallelism of the derived algorithms, these approaches

can be easily implemented through modern GPGPU to achieve a significant improvement in

computation time.

4.1.1 Contributions

In this work, we propose a new dual optimization-based approach to address non-rigid brain

image registration efficiently and accurately based on our recent work [33]. This framework

employs a standard coarse-to-fine optical-flow estimation framework, and can optimize the

energy function based on any point-wise similarity or dissimilarity metric and either total vari-

ation or other convex regularization using a non-smooth Gauss-Newton (GN) approach. We

introduce a novel dual optimization formulation from which we derive an efficient duality-

based optimization algorithm. Unlike the previous approaches proposed in [19, 20], which

target to optimize a similar convex energy function, our method optimizes the exact convexi-

fied objective function, rather than an approximate energy function with the additional artificial

splitting term. This implies great advantages in higher optimality degree and numerical perfor-

mance, such that the proposed method is more accurate, simple (with fewer parameters) and

robust when presented with a low regularization parameter, and it has more uniform conver-

gence in said cases without sacrificing optimality. Additionally, our method takes advantage

of GPGPU computing to dramatically improve its computational efficiency. In particular, we
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implement and study two convex deformation regularization functions upon the proposed dual

optimization framework. Extensive comparisons against the four highest ranking methods as

highlighted by Klein et al. [34], which allow direct and fair numerical comparisons, demon-

strate that the proposed dual optimization based approach achieves both high accuracy and

numerical efficiency.

4.1.2 Previous Studies

In this section, we summarize several previous methods employed to solve the deformable im-

age registration problems. Recent surveys [23, 35, 36] present a good overview of the existing

non-linear image registration methods. First, we present a more detailed summary of the simi-

lar TV-L1 regularization method investigated by Pock et al.[19, 20] :

TV-L1-Optical-Flow:

The TV-L1-Optical-Flow method developed by Pock et al.[19, 20] is similar to our method in

that it addresses total-variation based regularization. The specific objective function involves

two coupled deformation fields u(x) and v(x) for an N-dimensional problem and is defined as:

min
u,v

λ

∫
Ω

|I1(x + v) − I2(x)|dx

+
1
2θ

∫
Ω

N∑
d=1

(u(x) − v(x))2dx +

∫
Ω

N∑
d=1

|∇u(x)|dx
(4.1)

in which λ ≥ 0 weights the contribution of the dissimilarity against the regularization, and

θ > 0 is a small parameter of the term penalizing the difference between the two deformation

fields u and v. This objective function is addressed through the splitting approach, that is, two

simultaneous simpler problems are addressed:

min
v
λ

∫
Ω

|I1(x + v) − I2(x)|dx +
1
2θ

∫
Ω

N∑
d=1

(u(x) − v(x))2dx (4.2)
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which considers the deformation field u to be fixed and

min
u

1
2θ

∫
Ω

N∑
d=1

(u(x) − v(x))2dx +

∫
Ω

N∑
d=1

|∇u(x)|dx (4.3)

which considers the deformation field v to be fixed. This is done in a coarse-to-fine framework

using thresholding to address the first optimization problem and a Chambolle iteration [37]

for the second. This method is similar in that it uses a duality-based approach to optimize for

the total variation based regularization, but is developed with a novel optimization perspective,

differing in terms of the objective function and optimization structure.

As a basis for comparison, we use the comparative study performed by Klein et al. [34]

where 14 DR algorithms were compared across four open brain image databases. In this work,

we use the highest four ranking DR methods identified in [34], as an example of the best in the

state of the art:

Advanced Normalization Tools (ANTs):

The Symmetric Normalization (SyN) DR method proposed by Avants et al.[16] uses a multi-

resolution scheme to enforce a bi-directional diffeomorphism while maximizing a cross-correlation

metric. It has been shown in several open challenges [34, 38, 39] to outperform well established

methods. SyN regularizes the deformation field through penalizing the squared magnitude of

the underlying velocity field.

Image Registration Toolkit (IRTK):

The well-known Fast Free-Form deformations (F3D) method in [40] defines ”a lattice of

equally spaced control points” [34] over the target image and, by moving each point, locally

modifies the deformation field. Normalized mutual information combined with a cubic b-spline

bending energy is used as the objective function. It employs a multi-resolution approach that
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uses progressively decreasing lattice spacing along with Gaussian smoothing.

Automatic Registration Toolbox (ART):

Ardekani et al.[18] present a homeomorphic DR method using normalized cross-correlation

as similarity metric in a multi-resolution framework. The deformation field is regularized via

median and low-pass Gaussian filtering at each iteration.

Statistical Parametric Mapping DARTEL Toolbox (SPM D):

The DARTEL algorithm presented in [41] employs a static finite difference model of a velocity

field. The flow field is considered to be a member of the Lie algebra, which is exponentiated

to produce a deformation inherently enforcing a diffeomorphism [41]. It is implemented in a

recursive, multi-resolution manner.

4.2 Methods

In this section, we propose a multi-scale dual optimization-based method to estimate the non-

linear deformation field u(x) = [u1(x), u2(x), u3(x)]T, between two given images I1(x) and I2(x),

which minimizes a variational optical-flow energy function, i.e.

min
u

P(I1, I2; u) + R(u) (4.4)

where P(I1, I2; u) represents a dissimilarity measure of the two input images I1(x) and I2(x) un-

der deformation by u, and R(u) is the regularization function to match a deformation field with

the required smoothness. In this chapter, we employ the sum of absolute intensity differences

(SAD):

min
u

P(I1, I2; u) :=
∫

Ω

|I1(x + u) − I2(x)| dx , (4.5)
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as an effective and robust similarity measurement to the two input images from the same imag-

ing modalities.

The proposed framework can also be directly adapted for more advanced image dissim-

ilarity measures designed for image registration between different image modalities, where

other metrics, such as mutual information (MI) [13, 14] or the non-local image similarity func-

tion [17] may be employed. Without additional constraints or regularization, any optimization

problem using these metrics is ill-posed and can lead to trivial or erroneous deformations.

A regularization term R(u) in (4.4) is often incorporated to make the minimization problem

(4.4) well-posed, and solutions well-behaved. These regularization terms also encourage the

deformation field to preserve the image’s topology. We consider the Lp-norm convex function

as the regularization term in this work, such that:

R(u) := α

3∑
i=1

∫
Ω

|∇ui|
p dx (4.6)

where p ≥ 1. Clearly, p = 1 gives rise to a non-smooth function, specifically the sum of three

convex total-variation functions: R(u) = α
∫

Ω
(|∇u1|+ |∇u2|+ |∇u3|)dx. In this chapter, we focus

on two well-known regularization functions, R(u) in (4.6) where p = 1 or 2, the former we will

denote as total-variation regularization (TVR) and the latter as quadratic regularization (QR).

Because of the expected non-linearity and non-convexity of the image functions I1(x) and

I2(x) because of noise and the presence of structure, it is challenging to directly optimize the

energy function (4.4), even if its regularization term R(u) is convex. To address this issue,

we introduce an incremental linearization and convexification approach to solving the studied

optimization problem (4.4), which lends itself to a standard coarse-to-fine optimization frame-

work. This approach allows for a global-optimization perspective, properly avoiding local

optima through the ability to capture large deformations.

In Section 4.2.1, we develop the coarse-to-fine optimization framework, composed of a

sequence of related minimization problems. Each of these problems is solved through a new
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non-smooth GN approach, introduced in Sections 4.2.2 and 4.2.3, which employs a novel se-

quential convexification and dual optimization procedure.

4.2.1 Coarse-to-Fine Optimization Framework

The first stage in our multi-scale approach, is the construction of the coarse-to-fine image

pyramid for each image function. Let I1
1(x) . . . IL

1 (x) be the L-level pyramid representation of

the image I1(x) from the coarsest resolution I1
1(x) to the finest resolution IL

1 (x) = I1(x), and

I1
2(x) . . . IL

2 (x) the L-level coarse-to-fine pyramid representation of the image I2(x). Indeed, at

the finest image resolution ` = L, we have IL
1 (x) = I1(x) and IL

2 (x) = I2(x), i.e. the original

images.

The optimization process begins at the coarsest resolution level, i.e. ` = 1, which extracts

the deformation field u1(x) between the two images of I1
1(x) and I1

2(x) such that

min
u1

P(I1
1(x), I1

2(x); u1) + R(u1) . (4.7)

In fact, the resulting vector field u1(x) gives the optimum deformation field at the coarsest scale.

It is interpolated to the next finer image resolution ` = 2 so as to compute the optimum finer-

level deformation field u2(x); the same process is repeated to obtain the optimum deformation

field u3(x) . . . uL(x) at each image resolution level, sequentially from the coarsest level to the

finest.

Second, at each resolution level `, ` = 2 . . . L, we compute an incremental deformation

field t`(x) based on the two image functions I`2(x) and I`1(x + u`−1), where I`1(x + u`−1) is warped

by the deformation field u`−1(x) computed at the previous resolution level ` − 1, i.e.

min
t`

P(I`1(x + u`−1), I`2(x); t`) + R(u`−1 + t`) . (4.8)

Clearly, the optimization problem (4.7) can be viewed as the special case of (4.8), i.e. for

` = 1, we define u0(x) = 0 and u1(x) = (u0 + t1)(x). Therefore, the proposed coarse-to-
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fine optimization framework sequentially explores the minimization of (4.8) at each image

resolution level, from the coarsest ` = 1 to the finest ` = L.

4.2.2 Sequential Convexification and Dual Optimization

Now we consider the optimization problem (4.8) at a single image resolution level. Given the

highly non-linear function P(I`1(x + u`−1), I`2(x); t`) in (4.8), we introduce a sequential lineariza-

tion and convexification procedure for this challenging non-linear optimization problem. This

procedure results in a series of incremental warping steps in which each step approximates an

update of the deformation field t`(x) = [t`1(x), t`2(x), t`3(x)]T, until the updated deformation is

sufficiently small, i.e., it iterates through the following sequence of convex minimization steps

until convergence is attained:

• Initialize (h`)0(x) = 0 and let k = 1;

• At the kth iteration, define the deformation field as

ũ`−1(x) :=
(
u`−1 +

k−1∑
i=0

(h`)i
)
(x)

and compute the update deformation (h`)k to ũ`−1(x) by minimizing the following convex

energy function:

min
(h`)k

∫
Ω

∣∣∣P̃k
0 + ∇P̃k · (h`)k

∣∣∣ dx + R(u`−1 + (h`)k) , (4.9)

where

P̃k((h`)k) = P(I`1(x + ũ`−1), I`2(x); (h`)k)

and P̃k
0(x) = P(I`1(x + ũ`−1), I`2(x); 0).

• Let k = k + 1 and repeat the second step until the new update (h`)k is sufficiently small.

Then, we have the total incremental deformation field t`(x) at the image resolution level
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` as:

t`(x) =

k∑
i=0

(h`)i(x) .

These steps can be viewed as a non-smooth GN method for the non-linear optimization

problem (4.8), in contrast to the classical GN method proposed in [42]. Moreover, the L1-norm

and the convex regularization term R(·) in (4.9) results in a convex optimization problem. The

non-smooth L1-norm from (4.9) provides more robustness in practice than the conventional

smooth L2-norm.

Here, we study the convex minimization problem (4.9), the most essential optimization

step in the proposed algorithmic framework, using a novel primal-dual optimization strategy:

This variational analysis not only provides an equivalent dual formulation to the proposed

optimization problem (4.9) but also results in an efficient duality-based optimization algorithm.

We simplify the expression of the convex optimization problem (4.9) as follows:

min
h

∫
Ω

|P0 + ∇P · h| dx + R(ũ + h) , (4.10)

where ũ(x) stands for a given deformation function.

Through variational analysis, we can derive a mathematically equivalent dual model to the

convex minimization problem (4.10):

Proposition 4.2.1 The convex minimization problem (4.10) can be represented by its primal-

dual model (B.7) and dual model:

max
|w(x)|≤1,q

E(w, q) :=
∫

(wP0 +

3∑
i=1

ũi div qi)dx − R∗p(q) (4.11)

subject to

Fi(x) := (w · ∂iP + div qi)(x) = 0 , i = 1, 2, 3 . (4.12)

For p = 1, 2, the dual regularization function R∗p(q) is given by (B.4)-(B.5).
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The proof is given in Appendix B.

4.2.3 Duality-Based Optimization Algorithm

As shown in Appendix B, each component of the deformation field [h1(x), h2(x), h3(x)]T oper-

ates as the optimal multiplier functions for their respective constraints, (4.12). Therefore, the

energy function of the primal-dual model (B.7) is exactly the Lagrangian function to the dual

model (4.11):

L(h,w, q) =E(w, q) +

3∑
i=1

〈hi, Fi〉 ,

where E(w, q) and the linear functions Fi(x), i = 1, 2, 3, are defined in (4.11) and (4.12) respec-

tively. We can now derive an efficient duality-based Lagrangian augmented algorithm based

on the modern convex optimization theories (see [43, 26, 27] for details), using the augmented

Lagrangian function:

Lc(h,w, q) = L(h,w, q) −
c
2

3∑
i=1

‖Fi‖
2 , (4.13)

where c > 0 is a positive constant and the additional quadratic penalty function is applied to

ensure the functions (4.12) vanish. Our proposed duality-based optimization algorithm is:

• Set the initial values of w0, q0 and h0, and let k = 0.

• Fix qk and hk, optimize wk+1 by

wk+1 := arg max
|w(x)|≤1

Lc(hk,w, qk) (4.14)

generating the convex minimization problem:

min
|w(x)|≤1

∫
wP0dx +

c
2

3∑
i=1

∫
(w∂iP − T k

i )2dx ; (4.15)
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where T k
i (x) (i = 1, 2, 3) is computed from the fixed variables qk and hk. wk+1 can be

computed by thresholding:

wk+1 = Threshhold|w(x)|≤1(wk+1/2(x)) , (4.16)

where

wk+1/2 =
c
∑3

i=1(∂iP · T k
i ) − P0

c
∑3

i=1(∂iP)2
.

• Fixing wk+1 and hk, optimize qk+1 by

qk+1 := arg min
q

Lc(hk,wk+1, q) ; (4.17)

which amounts to three convex minimization problems:

min
qi

∫
qi · ∇ũidx +

c
2

∫
(div qi − Uk

i )2dx + R∗p(q) ;

i = 1, 2, 3 ; (4.18)

where Uk
i is computed from the fixed variables wk+1 and hk. Hence, qk+1

i , i = 1, 2, 3, can

be approximated by a gradient-descent or gradient-projection step, depending on which

formulation R∗p(q) of (B.4) and (B.5) is applied.

• Once wk+1 and qk+1 are obtained, update hk+1 by

hk+1
i = hk − c

(
wk+1 · ∂iP + div qk+1

i

)
;

i = 1, 2, 3 ; (4.19)

• Increment k and iterate until converged, i.e.

c
∫ ∣∣∣wk+1 · ∂iP + div qk+1

i

∣∣∣ dx ≤ δ , (4.20)



www.manaraa.com

Chapter 4. Deformable Image Registration with Dual Optimization 119

where δ is a chosen small positive parameter (5 × 10−4).

4.3 Experiments

4.3.1 Image databases

The image data consisted of an open multi-center T1-weighted (T1w) MRI dataset with cor-

responding manual segmentations of 80 labelled image volumes. All data used in [34] were

made available on www.mindboggle.info [44] in a pre-processed form with labeling protocols

and transforms into MNI space or pairwise affine registrations (for LPBA40). Table 4.1 gives

an overview of the image acquisition parameters and image information.

Dataset Subjects Ages TR TE (ms) FA FS NLabels

LPBA40 [45] 40 (20 ♂, 20 ♀) 4.2-4.5 20 1.5T 56
IBSR18 [46] 18 (14 ♂, 4 ♀) 7-71 n/a n/a n/a 1.5T 84
CUMC12 [47] 12 (6 ♂, 6 ♀) 34 5 45 1.5T 128
MGH10 10 (4 ♂, 6 ♀) 22-29 6.6 2.9 8 3.0T 74

Table 4.1: Overview of image acquisition and population parameters.

4.3.2 Initialization & Pre-processing

Prior to registration, all T1w images in the IBSR18, MGH10, and CUMC12 databases were

skull stripped by constructing brain masks from manual labels using morphological operations

[34]. The images in the LPBA40 database were already pre-processed in a similar manner

as described in [45]. Prior to DR, the images were mapped to the MNI152 T1 1mm brain

(for IBSR18, MGH10, CUMC12) and MNI 305 space (for LPBA40), respectively using the

FMRIB Software Library’s (FSL) FLIRT package [48]. These affine transformations were

available and used to initialize the DR algorithms. This guarantees that the same initialization

is used for the algorithms in [34] and our proposed methods, allowing for quantitative com-

parisons. As a pre-processing step, both source and target images were robustly normalized to
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zero mean and standard deviation units to ensure regularization weight α constancy across the

different databases.

4.3.3 Implementation & Parameter Tuning

Both proposed DR methods were implemented using MATLAB (Natick, MA) and the CUDA

(NVIDIA, Santa Clara, CA) GPGPU computing architecture. The GN optimization scheme

was implemented in a hierarchical manner involving a series of ‘levels.’ Each level corresponds

to a degree of undersampling, each subsequent level increasing in resolution by a factor of two

until the original image resolution is reached. Each level additionally consists of multiple

warps invoking the proposed GPGPU accelerated regularization algorithm. Parameter tuning

of the regularization weight α was performed on two randomly picked dataset pairs from each

database, similar to the tuning in [34]. All other parameters, such as the number of levels

(NLevels), the number of warps (NWarps) and the maximum number of iterations (ItMAX) were

determined heuristically on a single image volume not used in this study. Table 4.2 contains all

set parameter values, which were fixed for all experiments.

Method α NLevels NWarps ItMAX

GN QR 0.05 3 4 220
GN TVR 0.30 3 4 220
All parameters were kept constant across all experiments.

Table 4.2: Registration parameters for the proposed methods

4.3.4 Validation Metrics

To facilitate direct comparison with other DR registration algorithms, we evaluated the result-

ing deformation fields using the same metrics as in [34]. These metrics evaluate the accuracy

of the correspondence between the source image, F, to the target image, R, with respect to a

labelled region, L, as indicated in [34]. Obtained deformations fields are used to warp the atlas

label of F into the space of R to be numerically compared by several metrics:
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• The target overlap (TO) as a regional metric:

TO =

∑
L |FL ∩ RL|∑

L |RL|
, (4.21)

• The volume similarity (VS) as a volume metric:

VS = 2
∑

L |FL| − |RL|∑
L |FL| + |RL|

, (4.22)

• The mean absolute distance (MAD) between the floating image boundary point FLBp

and the closest reference image boundary point RLBp′ as a distance metric:

MADL =
1
P

P∑
p=1

min
p′
|FLBp − RLBp′ | , (4.23)

For all accuracy metrics on all four databases, results were considered significant if the

probability of making a type I error was less than 5% (p < 0.05). For this purpose, we em-

ployed a series of two-tailed, pairwise Student’s t-test, under the Bonferroni correction to ad-

dress for multiple hypotheses. Both proposed methods were tested against each other and the

best performing comparative method in order to determine significances in means.

4.4 Results

4.4.1 Run times

All experiments were conducted on a Ubuntu 12.04 (64-bit) desktop machine with 144 GB

memory and an NVIDIA Tesla C2060 (512 cores, 6 GB memory) graphics card. The maximum

run times for the MATLAB code including pre-processing and GN optimization, and GPGPU

enhanced regularization at different resolution levels, are stated in Table 4.3. Considering total

run times, the GN TVR runs for ∼30 seconds longer, mainly due to the increased computational
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Figure 4.1: Exemplary registration results for both proposed methods on all four databases.
Columns (from left to right): Floating image, registration with GN TV, registration with GN
QR, reference image, label map of the reference image, . Rows (from top to bottom): Image
pairs from the CUMC12, IBSR18, MGH10 and LPBA40 databases.
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complexity of the method.

GPU reg. [s] GN opt. [s] Total time [s]
DSF 4x 2x 1x
GN QR 0.26 1.82 13.59 9.08 71.40
GN TVR 0.37 2.70 20.66 10.62 104.70

Table 4.3: Partial and total maximum run times for GN optimization and regularization using
the proposed methods. The partial maximum run times are stated for GPGPU-based optimiza-
tion on resolution levels with different downsampling factors (DSF).

4.4.2 Accuracy

Figure 4.2 shows boxplots of the TO accuracy for each of the four databases using the four

best ranked methods according to Klein et al.[34] and the two proposed methods. Table 4.4

lists all numerical results of the TO, where numerical results for VS and MAD can be found in

Table 4.5 and Table 4.6 respectively. The results were averaged across all regions in each label

set (LPBA40, IBSR18, CUMC12, and MGH10) then across brain pairs as obtained from the

scripts available in [44]. All T-tests were statistically significant (p < 0.05, under Bonferroni

correction), unless noted with (*).

Target Overlap

The proposed GN TVR method significantly outperformed all comparative methods in terms

of mean TO in 3 out of 4 databases (IBSR18, CUMC12, MGH10), yielding at least 10% higher

TO than the methods presented in [34]. However, on the LPBA40 database, ART outperformed

both proposed methods significantly. In comparison, the GN method using TVR yielded sig-

nificantly higher TO than with QR, except on LPBA40.
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Volume Similarity

In terms of VS, the GN QR method outperformed both the GN TVR and comparative methods

on 2 of 4 databases significantly (IBSR18, CUMC12). Improvements over ART were not sig-

nificant on LPBA40 and also not significant compared to TVR on MGH10.

Distance Error

All DEs for proposed GN methods were computed with the scripts provided online on [44],

however were only stated for LPBA40 for all comparative methods, since only those results

were provided. On LPBA40, SPM D yielded significantly lower DE by an average of 0.25

mm than both proposed methods. On all other databases (IBSR18, CUM12, MGH10), the GN

TVR method outperformed the QR-based method significantly.

LPBA40 IBSR18 CUMC12 MGH10
FLIRT 59.3 ± 11.9 39.7 ± 13.0 39.6 ± 11.5 46.2 ± 14.0
SPM D 67.2 ± 18.4 54.0 ± 14.7 52.0 ± 13.9 54.3 ± 16.1
IRTK 70.0 ± 10.3 52.1 ± 15.0 51.8 ± 12.5 54.9 ± 15.7
ART 71.9 ± 9.6 51.5 ± 14.1 50.5 ± 12.2 56.1 ± 15.3
Syn 71.4 ± 10.9 52.8 ± 14.9 51.6 ± 12.6 56.8 ± 15.8
GN QR 71.1 ± 9.4 60.8 ± 11.8 60.3 ± 10.4 65.2 ± 10.2
GN TVR 69.5 ± 10.0 64.9 ± 12.5 64.7 ± 10.5 69.2 ± 9.4
All results were statistically significant (p < 0.05, see Sec.4.4.2).
The highest mean TO for each database is shown in bold.

Table 4.4: Mean target overlap (TO) accuracy

4.5 Discussion

We proposed two novel GPGPU-accelerated regularization methods on deformation fields in

deformable registration. These methods were implemented within a multi-resolution GN op-

timization framework and compared on four publicly available databases. We employed the
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Figure 4.2: Mean Target Overlap (TO) Results Across All Image Databases
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LPBA40 IBSR18 CUMC12 MGH10
FLIRT 89.7 ± 7.6 82.2 ± 12.6 83.0 ± 11.9 81.3 ± 12.6
SPM5-D 87.1 ± 20.3 83.3 ± 12.3 83.3 ± 14.4 80.9 ± 13.3
IRTK 91.1 ± 6.7 82.4 ± 12.6 83.8 ± 11.7 81.4 ± 13.1
ART 91.4 ± 6.6* 83.0 ± 12.3 83.8 ± 11.7 82.0 ± 12.6
Syn 91.4 ± 6.7 83.1 ± 12.2 83.7 ± 11.7 81.7 ± 12.7
GN QR 91.5 ± 6.5* 94.4 ± 4.3 94.7 ± 4.0 94.8 ± 3.8*
GN TVR 91.0 ± 6.8 93.3 ± 5.9 94.7 ± 4.1 94.7 ± 3.9*
All results were statistically significant (p < 0.05), except for *., see Sec.4.4.2
The highest mean VS for each database is shown in bold.

Table 4.5: Mean volume similarity (VS) accuracy

LPBA40 IBSR18 CUMC12 MGH10
FLIRT 3.80 ± 1.19
SPM5-D 2.84 ± 1.44
IRTK 3.03 ± 1.00
ART 2.92 ± 0.93
Syn 2.89 ± 1.01
GN QR 2.94 ± 0.93 1.74 ± 0.25 1.24 ± 0.39 2.13 ± 0.62
GN TVR 3.09 ± 0.98 1.56 ± 0.23 1.11 ± 0.38 1.98 ± 0.57
All results were statistically significant (p < 0.05, see Sec.4.4.2).
The lowest mean MAD for each database is shown in bold.

Table 4.6: Mean mean absolute distance (MAD) accuracy

same initialization, tuning conditions, and evaluation scripts to quantitatively compare the pro-

posed methods against 14 well-known DR methods, and we numerically state the accuracy

metrics for the four highest ranked methods for direct comparison.

4.5.1 Run times

Due to the inherent parallelism of both QR and TVR regularizers, comparably short run times

were observed for both proposed methods. The overall lower run time of the QR regularization

(see Table 4.3) can be explained by the lower complexity of the QR solver. The maximum run

time of 104 seconds of the GN TVR method is very low compared to those reported for the

comparative methods by Klein et al. [34], where the mean run times reported ranged from ∼17
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(SPM D) to ∼120 (IRTK) minutes.

We want to emphasize the potential impact of graphics hardware on the total run time of

the proposed methods: TV regularization required ∼90% of the total run time of the method on

a relatively old Tesla C2060 GPU (release date 2010). Because of this, the run times of both

methods can be expected to improve considerably by employing more recent hardware, which

could help overcome the computational limitations associated with approaches relying heavily

on DR, such as multi-atlas-based segmentation.

Lastly, we note that the similarity metric we used has a low computational cost, but the total

run time might increase when implementing more advanced similarity metrics such as mutual

information, cross-correlation, or non-local approaches [17]. However, there have also been

attempts to implement such algorithms using GPGPU [49, 50, 51] to mitigate the increase in

computational burden.

4.5.2 Accuracy

Both proposed methods yielded higher accuracy on three of the four databases in all metrics,

where the GN TVR version scored higher in TO and MAD and slightly lower in terms of VS on

IBSR18, CUMC12 and LPBA40 (VS results on MGH10 were not statistically significant). The

proposed GN TVR method demonstrated impressive performance yielding improved TO accu-

racy of >5% over QR and >10% against the comparative methods on the IBSR18, CUMC12

and MGH10 databases.

We note the qualitatively lower number of outliers in TO for both proposed methods (see

Figure 4.2). Especially on LPBA40, where the affine initialization (FLIRT) had several outliers

yielding low TO, both methods were able to correct for this, demonstrating good robustness

with respect to initialization.

All accuracy metrics on LPBA40 for all DR methods were similar in their means, however

differences statistically significant (p < 0.05). This might be due to the choice of labeling

protocol (see Figure 4.1) for this particular database being very liberal in its classification of
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cortical gray matter. This labeling protocol demarcates no distinct gray matter/white matter

boundaries and this might reduce its capacity to measure accuracy of DR techniques.

Recently, the S-HAMMER [52] method has been developed and validated across the same

sequence of image databases outperforming the same 14 methods explored by Klein et al [34].

The authors in [52] state means and standard deviations of resulting TO of S-HAMMER, how-

ever, no other metrics evaluated in Klein et al. [34] were reported. Since the individual results

obtained by the S-HAMMER method were not released, statistical testing was not possible.

Both of our proposed methods outperform S-HAMMER across three of the four databases

(IBSR18, CUMC12, and MGH10) by >5% TO. Wu et al [52] reported a TO of 72.48 ± 8.46%

for LPBA40 - higher than the best performing method (ART) in this study.

We note that both proposed methods employ the simplest and non-robust similarity metric,

SAD, while SPM D, IRTK, ART and SyN use advanced metrics (see [34]). The choice of

similarity metric was intentionally chosen for these experiments to demonstrate the potential of

the proposed methods without more sophisticated similarity metrics or an advanced optimizer

(i.e. a Levenberg-Marquardt optimizer as that used in SPM D [41]).

4.5.3 Future directions

The current RANCOR framework can be seen as a basic method to be extended over time,

under the same open science credo, that allowed us to readily and quantitatively compare well-

known open methods using public databases. As the current framework cannot mathematically

guarantee that the resulting deformations will be diffeomorphic, the next step is to enforce

such a constraint. Furthermore, to enable inter-modality DR, we will implement and test com-

monly used advanced similarity metrics, such as normalized mutual-information, normalized

cross-correlation, or more recently developed methods, such as the L2 − norm of the MIND

descriptor [17]. Since command-line tools, such as the open DR methods are required for

large-scale data analysis, RANCOR and its source code is openly available to the community

(http://sourceforge.net/projects/rancor/ ).



www.manaraa.com

BIBLIOGRAPHY 129

4.6 Conclusions

We proposed two GPGPU-accelerated regularization mechanisms implemented within a GN

optimization framework and evaluated them against the four highest ranking non-linear regis-

tration algorithms according to [34]. Further, we demonstrated its high accuracy in performing

pairwise registrations on four open databases both visually and numerically, and provide the

implementation back to the community in an open manner.
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of a dense deformation field for 3D robust registration. IEEE Trans. Med. Imaging, 20

(5):388–402, 2001.
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Chapter 5

Hierarchical Max-Flow Segmentation

Framework For Multi-Atlas Segmentation

with Kohonen Self-Organizing Map Based

Gaussian Mixture Modeling

5.1 Introduction

Automatic partitioning of an image into multiple clinically relevant regions is a common yet

challenging problem, which spans almost all of medical image analysis. In particular, the in-

corporation of intensity, spatial, and topological information into automatic brain segmentation

has been a recurring subject of research in medical image analysis [1, 2, 3, 4, 5, 6, 7, 8].

This Chapter is adapted from an article currently in submission. M. Rajchl*, J.S.H. Baxter*, A.J. McLeod,
J. Yuan, W. Qiu, T.M. Peters and A.R. Khan (2014). Hierarchical Max-Flow Segmentation Framework For
Multi-Atlas Segmentation with Kohonen Self-Organizing Map Based Gaussian Mixture Modeling. Medical Image
Analysis. *Authors contributed equally.
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Many of these approaches to automatic partitioning have focused on the incorporation of a

complex shape-model representing the entire anatomy [9], or the incorporation of large-scale

medical image atlases [5, 10] containing images with these regions segmented a priori and

often manually. The former often involves complex procedures to fit the model to the image

which can experience difficulty in the presence of pathology. The latter suffers from issues

associated with registration error, manual segmentation or user variability, and limited image

variability in the atlas. A large portion of research in these areas has focused on overcoming

these issues and expanding the scope of these methods.

In this chapter, we study a general approach to multi-region segmentation and test its appli-

cability to the segmentation of brain structures from magnetic resonance images (MRI) based

on our previous work [11]. The proposed method learns Gaussian Mixture models of image

features derived from training data via Kohonen Self-Organizing Maps, and combines them

with shape models generated from multi-atlas registrations. The information is fused and sub-

sequently regularized via max-flow optimization in a globally optimal manner, where major

components of the pipeline are parallelized using GPGPU for a substantial increase in compu-

tational efficiency.

5.1.1 Incorporating Intensity Information

With the increasing prevalence of multi-channel data in medical imaging, whether through

multiple acquisitions or derived intensities, intensity distribution modelling has become in-

creasingly necessary for image segmentation. Many machine learning approaches treat this

as a classification problem, using a large number of channels (often derived, such as gradient

magnitudes, or multi-scale image pyramids) as input vectors to a general purpose classifier

such as a support vector machine or k nearest neighbours [12].

Other approaches have been centred more in probability theory, where the intensity distri-

bution is explicitly modelled. Mixture models, specifically Gaussian mixture models trained
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using variants of the expectation maximization algorithm [13, 8, 14] have been fairly popular

due to their ability to capture information and correlations between multiple channels without

prohibitive memory requirements or metrification artifacts.

5.1.2 Incorporating Spatial Information

One approach to the incorporation of spatial information is to consider it a specialized form

of ’intensity’. Using the location of a point in a common co-ordinate system as a separate

feature is a common approach in machine learning methods [12]. Learning the distribution of

such information has also been used, either alone or in the context of another segmented object

[13, 14].

Registration to an atlas is often used to encode spatial information either to assist in classi-

fication [15] or perform label fusion [3, 6].

5.1.3 Incorporating Topological Information

Markov Random Field modelling has been of increasing interest to the medical imaging com-

munity [2, 16, 17, 18, 19, 6, 7]. Specifically for multi-region image segmentation, there exist

several computationally inexpensive solvers approximating global optimality. A recently pub-

lished review on discrete and continuous Potts model regularization can be found in Nieuwen-

huis et al. [20]. A commonly studied model for representing multi-region segmentation is the

convex relaxed continuous Potts model [21, 22], minimizing:

E(u) =
∑
∀L

∫
Ω

(DL(x)uL(x) + S (x)|∇uL(x)|)dx

s.t. uL(x) ≥ 0 and
∑
∀L

uL(x) = 1

where uL(x) represents a probabilistic segmentation of region L based on data terms, DL(x),

and regularization term, S (x).
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The dual formulation of this relaxed Potts model amounts to a rapid optimization tech-

nique, which can be readily implemented using GPGPU on commercially available hardware

to achieve substantial improvements in computation speed. However, these models have diffi-

culty in managing multi-region segmentation problems in which several regions have individ-

ual regularization requirements not represented by a single smoothness term [23]. This lack

of topological knowledge has lead to the development of more nuanced max-flow segmen-

tation models such as Ishikawa models [24, 25, 26] although said models are constrained to

segmentation problems in which the relationships between objects can be expressed using a

full-ordering. This constraint poses difficulty for the segmentation of anatomy in which the

part/whole relationships cannot be defined as such.

Recently, irregular hierarchical models have been proposed to address problems in which

the labels are not expressed as fully ordered, but have differing regularization requirements. In

a former study [27], we proposed a method based on a partially ordered Potts model.

This approach allows for labels to be grouped and regularized together and can thus treat la-

bel groups with different smoothness constraints. The dual formulation also permits a GPGPU-

based implementation. As of yet, however, these hierarchies have been limited in the number

of labels, and have traditionally been hard-coded, and therefore not readily extendable to larger

segmentation problems. An extendable hierarchical version of discrete graph cuts using the

h-fusion algorithm similar to αβ-swap has recently been proposed to address some of these

topological problems [28]. However, as with other discrete graphical models, this method

suffers from the same limitations compared to their continuous counterparts [22, 20].

5.1.4 Contributions

We have developed a series of segmentation support tools and constructed a multi-atlas tissue

segmentation framework. Novel tools include:

1. A Kohonen self-organizing map (KSOM) based intensity distribution modelling mecha-

nism that takes advantage of the dual probabilistic and manifold-learning nature of these
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networks, and

2. A max-flow solution algorithm to general hierarchical segmentation problems where the

topological is expressed not as a Potts model or Ishikawa ordering, but an arbitrary hier-

archy, which can be modified in run-time, minimizing recompilation.

These tools, as well as label-fusion techniques, can be combined into a optimization-based seg-

mentation framework addressing the maximum a posteriori probability problem. In addition,

we have released open-source CPU and GPGPU implementations online

(http://sourceforge.net/projects/asets/ ) to ensure reproducibility.

We assess our framework in terms of accuracy against a conventional convex-relaxed con-

tinuous Potts model. The datasets used for this validation are both publicly available neu-

roimaging databases, specifically the OASIS database [29, 30] and the MRBrainS2013 database

[31].

5.2 Methods

Our method involves four major components, each of which will be discussed in detail. These

methods were combined in the pipeline shown in Figure 5.1.

5.2.1 Generalized Hierarchical Max-Flow Segmentation

Generalized Hierarchical Max-Flow (GHMF) models [32] generalize both Potts and Ishikawa

models, minimizing energy functionals of the form:

min
u

∑
∀L

∫
Ω

(DL(x)uL(x) + S L(x)|∇uL(x)|) dx (5.1)
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Figure 5.1: Segmentation Pipeline

subject to the constraints:

∀L, uL(x) ≥ 0

∀L,
∑

L′∈L.C

uL′(x) = uL(x)

uS (x) = 1

(5.2)
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in which L.C refers to the children, or the partition, of L. In this formulation, the regions

must be arranged in a tree where each parent region is partitioned into its child regions and a

specialized root node, S , representing the entire image. From here on, trees of this form will

be referred to as hierarchies. (The specific hierarchies used are shown in Figures 5.3 and 5.4.)

These hierarchies have been previously used to express topological considerations in image

segmentation, specifically part/whole relationships [4, 28].

A distinct advantage of such a general formulation is that it is sufficiently expressive to rep-

resent a super-factorial number of hierarchies including all possible Potts and Ishikawa mod-

els, which is considerably larger asymptotically than either the 1 possible Potts model or the

N! possible Ishikawa models given N labels. This indicates that a larger class of segmentation

problems can be addressed with the GHMF formulation than previous extendable formulations,

allowing for more topological information (specifically in the form of part/whole relationships)

to be explicitly included in the optimization-based segmentation framework [32].

Additionally, GHMF has a more flexible regularization parameter space in stark contrast to

the one parameter Potts model commonly used.

This problem expressed in (5.1) and (5.2) can be addressed through a primal-dual opti-

mization framework similar to that proposed by [22], displaying the equivalence of (5.1) to the

primal model:

max
p,q

∫
Ω

pS (x)dx (5.3)

subject to the flow conservation constraint:

G(x) := divqL(x) + pL(x) − pL.P(x) = 0 , (5.4)

spatial flow capacities:

∀L, |qL(x)| ≤ S L(x) , (5.5)
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and sink capacities:

∀L s.t. L.C = ∅, 0 ≤ pL(x) ≤ DL(x) . (5.6)

Without loss of generality, we consider only the leaf nodes (that is, nodes where L.C = ∅) to

have non-zero data terms [32]. The primal model (5.3) and dual model (5.1) can both be shown

to be equivalent to the following primal-dual model using a Lagrangian multiplier over the flow

conservation constraint (5.4):

min
u

max
p,q

∫
Ω

pS (x)dx +
∑
∀L,S

∫
Ω

uL(x)GL(x)dx

 , (5.7)

subject to (5.5) and (5.6) which can be addressed computationally through augmentation [33]

as:

min
u

max
p,q

∫
Ω

pS (x)dx +
∑
∀L,S

∫
Ω

uL(x)GL(x)dx+

c
2

∑
∀L,S

∫
Ω

GL(x)2dx

 .

(5.8)

This minmax optimization problem can be decomposed into a sequence of highly paralleliz-

able tasks, making it suitable for GPGPU acceleration. Our implementation takes advantage

of Compute Unified Device Architecture (CUDA) (NVIDIA, US) integrated into the Visual-

ization Toolkit (VTK) library (Kitware, US). In addition to the fine-grained parallelism within

individual tasks, there are additional coarse-grained concurrent execution possibilities between

tasks, allowing for multiple GPUs to be used simultaneously on a single segmentation problem

to further improve performance. Details concerning the solver are provided by [32].

The cost terms were generated using both a spatial/shape framework discussed in Section

5.2.2 and an intensity framework discussed in Section 5.2.3.

5.2.2 Deformable Registration and Atlas

The first step in our segmentation pipeline is to register the incoming image to our atlas of im-

ages that have been manually segmented a priori. To achieve this, we used a convex optimiza-
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tion based deformable registration method, RANCOR [34], with an affine initialization from

the Nifty Reg package [35]. The similarity metric used in RANCOR was the sum of absolute

differences between images and total-variation regularization on the underlying deformation

fields was used to ensure that they maintain topological consistency and avoid erroneous trivial

solutions or singularities in the resulting deformation field. The underlying objective function

being minimized is:

min
t

∫
Ω

|I1(x) − I2(x + t(x))| +
3∑

i=1

|∇xti(x)|dx (5.9)

where I1(x) and I2(x) represent the underlying images and t(x) represents the underlying de-

formation field. Due to the non-linearity of I1(x) and I2(x), this function is obviously non-

convex. To address this, a multi-scale coarse-to-fine optimization framework is used where

the optimal coarser-grained deformation fields are used to initialize the finer-grained ones in a

dual-optimization framework [34].

Once the current image has been registered to each image in the atlas, an initial set of

labels can be propagated. Since multiple images are used, each with its own labeling, fusion

methods are required to combine this information or to distill probabilistic approximations and

log-likelihood cost terms. For this, we investigated two methods:

• Mean label fusion (MLF) is the simplest label fusion technique. Probability maps are

created based solely on the percentage of atlases choosing a particular label for a partic-

ular voxel, that is:

P(x ∈ L) =
# of atlases with voxel x ∈ L

# of atlases
.

• Joint label fusion (JLF) [10] develops probability maps similar to MLF, but weights the

atlases at each voxel, based on the joint probability of multiple atlases making incorrect

labellings simultaneously. This probability is estimated from the difference in intensity

in a local neighbourhood between the atlases and the target image.
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5.2.3 Kohonen Self-Organizing Map Based Mixture Modeling and Opti-

mization Costs

One of the most common data term structures is based on applying Bayes’ theorem to the

image intensity using a priori trained intensity distribution models, either from sampled voxels

from the image to be segmented [16] or a prior segmented atlas [5]. The latter is implemented

in our framework using the data term:

DL(x) = − ln (P(I(x)|x ∈ RL)) . (5.10)

Gaussian mixture models (GMMs) are widely known to be a flexible alternative to histogram-

based intensity distribution representation, especially well suited to multi-channel segmenta-

tion in which the storage space required by histograms becomes prohibitive and metrification

artifacts degrade derived statistical measures. These models describe a general distribution as:

P (I(x)) =

N∑
i=1

w(i)N(µ(i),Σ(i)) . (5.11)

which are normally trained using the Expectation Maximization (EM) algorithm [36]. Despite

its popularity, this algorithm is known to have a number of limitations especially sensitivity to

initialization and the dominance of a few components with higher weight over a larger number

of lower weighted components.

Since their inception, Kohonen self-organing maps (KSOMs) [37] have received a large

degree of interest in the machine learning community for clustering, manifold learning, and di-

mensionality reduction purposes. Recently, several approaches have been made to consolidate

KSOMs with GMMs [38, 39, 40] through modifications to the expectation-maximization (EM)

algorithm, the traditional method for GMM training. To reduce the memory requirements for

the GMM, the covariance matrix was assumed to be diagonal with variance v(i)
j for Gaussian

component i and channel j. The particular KSOM-based training algorithm used is given in
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Figure 5.2. This algorithm was also accelerated using GPGPU programming in order to ensure

computational performance.

Initialize w(i), µ(i), and v(i) ensuring that
∑
∀i w(i) = 1, w(i) ≥ 0, v(i)

j > 0

while not converged do
Pick some sample subset, S ⊂ {1, 2...V}

s ∈ S , h(i,s) ← w(i)g(x(s)|µ(i), v(i))

s ∈ S , h(i,x) ← h(i,s)/
∑M

j=1 h( j,s)

∀s ∈ S , c(s) ← argmin
{i}

h(i,s)

w(i) ← (1 − α)w(i) + α(t)

|S |

∑
s∈S

(
h(i,s) − w(i)

)
µ(i) ← (1 − α)µ(i) + α(t)

|S |

∑
s∈S
N

(t)
|i−c(s) |

h(i,s)(x(s)−µ(i))∑
s∈S
N

(t)
|i−c(s) |

h(i,s)

v(i) ← (1 − α)v(i) + α(t)

|S |

∑
s∈S
N

(t)
|i−c(s) |

h(i,s)((x(s)−µ(i))2−v(i))∑
s∈S
N

(t)
|i−c(s) |

h(i,s)

end while

Figure 5.2: KSOM-Based GMM Training

In terms of initialization, we take advantage of the relationship between KSOM training

and manifold learning or dimensionality reduction. We use a Principle Component Analysis

based initialization, where the Gaussian components in the mixture model are initially uni-

formly spaced in a plane dictated by the first N principle components of the training images,

corresponding to the N-dimensional Gaussian component indexing scheme. (For this appli-

cation we have chosen N = 2, which allows for ready visualization of the maps to ensure

fidelity.) This ensures that linear components of the intensity distribution are automatically

handled through the initialization, and guarantees more repeatable and therefore comparable

maps despite the random component present in data subset selection.
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5.2.4 Smoothness Terms

Smoothness terms were created sensitive to edges in the image identified by local intensity

changes. The smoothness cost was correspondingly:

S L(x) = αL ∗ exp
(
−λ|∇I(x)|

1 + |∇(k ∗ I(x))|

)
, (5.12)

where k is a Gaussian kernel and the parameter αL is specified per label in GHMF.

The normalization by local contrast allows for a single smoothness field to be used for all

regions despite discrepancies in contrast between regions. This reduces the amount of param-

eterization necessary in the segmentation pipeline, and allows it to generalize more effectively

across different MR acquisitions.

5.3 Experiments

Two experiments were performed to investigate the efficacy of KSOM-based GMMs over tradi-

tional EM-based approaches, and the applicability of hierarchies over the more commonly-used

continuous Potts model [20].

5.3.1 OASIS Database

The MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling [30] recently

released all training and test data to the pubic. It provides 15 training and 20 test datasets from

the Open Access Series of Imaging Studies (OASIS) database [29] with manually segmented

label maps performed by [41]. Each entry in the database contains a defaced T1-weighted

volume (MPRAGE sequence at 1.5-T, TR = 9.7, TE = 4.0, TI = 20.0, flip angle = 10◦) with

1x1x1.25 mm voxel sizes.

The labeling protocol for the OASIS database in its original form is a brain parcellation

protocol using 134 labels. These original labels were fused to a tissue segmentation protocol
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containing background (BG), cortical gray matter (cGM), subcortical gray matter (sGM), white

matter (WM), ventricles (V) and brain stem (BS).

Ten features are extracted from the input T1w image: i) the image intensity, ii) the intensity

after convolution with a Gaussian kernel of σ = 1, 2, 3 mm3, iii) the gradient magnitude of

the intensity after convolution with a Gaussian kernel of σ = 1, 2, 3 mm3 and the Laplacian of

the intensity after convolution with a Gaussian kernel with σ = 1, 2, 3 mm3. All images are

normalized to unit standard deviation within the brain mask to ensure intensity consistency.

These features allow us to create a ‘synthetic multi-channel’ image (as opposed to multiple

distinct MR sequences) that captures intensity information on multiple scales.

5.3.2 MRBrainS Database

To evaluate our segmentation method on multi-channel data, we used the MRBrainS 2013

database [31] which contains twenty entries each with three images, a T1-weighted, T2 Fluid

Attenuated Inversion Recovery (FLAIR), and T1 inversion recovery (IR) image all at 3-T with

a voxel size of 0.96x0.96x3.00 mm and co-registered into a single co-ordinate space. Five

datasets were provided for training and 15 for testing purposes.

The MRBrainS labels to be segmented contained background (BG), cortical gray matter

(cGM), subcortical gray matter (sGM), white matter (WM), white matter lesions (WML), ex-

ternal cerebro-spinal fluid (eCSF), and ventricles (V).

For MRBrainS segmentation, we used all three provided intensity channels: i) T1w, ii) T2

FLAIR and iii) T1 IR as features. All images are normalized to unit standard deviation using

the brain mask to ensure intensity consistency.

As evaluation on this database was done externally (ground truth was provided only for

the five training datasets) and with limited submissions, only the highest performing combi-

nation of components (i.e. KSOM GMM learning with JLF under GHMF regularization) of

our framework, based on the results from the OASIS database, was evaluated. This, however,

allowed for quantitative comparison against other submissions representative of the state-of-
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the-art in multi-region brain segmentation.

5.3.3 Multi-Atlas Image Registration

All images were bias-corrected using the approach of [42] and normalized [6]. All train-

ing images were then affinely registered using a block-matching technique [35] (default pa-

rameters). Subsequent deformable registration was performed using RANCOR, a GPGPU-

enhanced deformable registration using a Gauss-Newton optimizer, with total-variation regu-

larization (αReg = 0.05) and the sum of absolute intensity differences as a similarity metric in

a multi-resolution manner [34]. Using the registered images, a brain mask is automatically

generated from computed spatial priors. For the purpose of the MRBrainS challenge, we fused

all registered WM and WML labels to obtain a combined WM label for the spatial term.

5.3.4 Learning GMMs via KSOMs

Image features are generated from each training image and used to learn GMMs via the pro-

posed KSOM method. All features were used in the training of the 2D KSOMs of size 32x32

for 112 epochs and GMMs of equivalent size using conventional EM [36] for 112 epochs. To

compare these distributions, we used the Kullback-Leibler divergence:

DKL(P||Pest) =
∑

i

ln
(

P(i)
Pest(i)

)
P(i) (5.13)

where i is a (vector-valued) intensity, P(i) is the true intensity distribution and Pest(i) is the

estimated distribution. Because the true distribution is not fully known outside of the estimates

PKS OM(i) and PEM(i), we cannot estimate DKL directly. However, we can estimate the difference
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in DKL between methods by:

DKL(P||PEM) − DKL(P||PKS OM)

=
∑

i

ln
(

P(x)
PEM(i)

)
P(i) −

∑
i

ln
(

P(i)
PKS OM(i)

)
P(i)

=
∑

i

(
ln

(
P(i)

PEM(i)

)
− ln

(
P(i)

PKS OM(i)

))
P(i)

=
∑

i

(ln PKS OM(i) − ln PEM(i)) P(i)

≈
1
V

∑
x

(ln PKS OM(xi) − ln PEM(xi))

(5.14)

where xi is the intensity of voxel x from the V testing voxels.

Data Costs for Segmentation

As stated in the previous section, our data terms are composed of two probabilistic frameworks:

the first from the intensity model and the second from a label fusion mechanism. We used two

label fusion methods for the purpose of these experiments: i) mean label fusion using GPGPU

and subsequently convolved with a Gaussian kernel (σ = 0.75) and ii) using the JLF method

in [10] using the ANTs [43] package. Due to the low number of available training images in

the MRBrainS database (N = 5) we left/right flipped the training datasets to artificially create

more images for the multi-atlas which allows for more accurate priors.

The energy (5.1) is optimized where DL(x) is:

DL(x) = − log P(I(x)|L) − βL log(P(S L(x)) , (5.15)

and P(S L(x) and P(I(x)|L) are the probabilities generated from the intensity model and the label

fusion mechanism, respectively. The parameter βL allows for the weighting of the intensity and

label fusion information to vary between labels based on which have more distinguishable

contrast but lower registration accuracy (such as eCSF) or low contrast with higher registration
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accuracy (such as sCGM). The S L(x) was defined in (5.12).

Hierarchy and Parameters

The hierarchies are given in Figures 5.3 and 5.4. (The S node refers to the entire image. That is:

uS (x) =
∑
∀L∈L uL(x) = 1.) These hierarchies were chosen heuristically based on the adjacency

and any shared regularization requirements of the regions to be segmented. The segmentation

parameters are given in Table 5.1. (Note that only segmented labels are associated with data

terms and have βL parameters.)

S

VBP1

cGM sGMP2

BSWM

Figure 5.3: MICCAI 2012 OASIS - Segmentation Hierarchy
* segmented labels are shown in gray: B - background, V - ventricles, cGM - cortical gray
matter, sGM - subcortical gray matter, WM - white matter, BS - brain stem

All segmentation parameters were tuned on the training data in a leave-one-out manner.

λ and the βL parameters were tuned through brute force search to maximize the DSC on the

training databases for the Potts model, along with the Potts smoothness parameter. The GHMF

smoothness parameters, α, were tuned heuristically due to the large parameter space using the

βL parameters tuned previously, ensuring that the Potts and GHMF models were given the same

data costs and are comparable.
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S

VP3P1

cGM sGM eCSF BP2

WM WML

Figure 5.4: MICCAI 2013 MRBrainS - Segmentation Hierarchy
* segmented labels are shown in gray: B - background, eCSF - external cerebro-spinal fluid,
V - ventricles, cGM - cortical gray matter, sGM - subcortical gray matter, WM - white matter,
WML - white matter lesions

5.3.5 Segmentation Evaluation Metrics

Each segmentation was evaluated along the lines of three metrics per label, L, where RL repre-

sents the generated segmented region, and R(G)
L indicates the gold standard segmentation:

• The Dice similarity coefficient (DSC) as a regional metric:

DS CL =
2|RL ∩ R(G)

L |

|RL| + |R
(G)
L |

(5.16)

• The absolute volume difference (VE) as a volumetric metric:

AVDL =
|RL| − |R

(G)
L |

|R(G)
L |

(5.17)

• The modified Hausdorff distance (MHD) as a distance metric, where MHD is the 95th-

percentile of the Hausdorff distance (HD):

HDL = max
p∈δRL

min
p′∈δR(G)

L

|p − p′| (5.18)
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MLF JLF
αL βL αL βL

OASIS
λ = 1

BG 0.5 3 0 12.5
cGM 75 9 70 22.5
sGM 0.6 3.5 2 20
WM 10 0.25 2.5 9
V 60 20 80 25
BS 0.75 2.0 0.25 14
P1 0.05 0.05
P2 0.5 0.1
Potts 1.25 3.0

MRBrainS
λ = 0.25

BG 2.0 10.0
cGM 0.05 2.25
sGM 0.6 1.5
WM 0 0.5
WML 0.05 0.75
eCSF 3.0 3.0
V 10.0 0.5
P1 0.025
P2 0.025
P3 0.025

Table 5.1: Segmentation Parameters: Parameters for the four comparative algorithms are
shown for OASIS. MRBrainS was only evaluated using the GHMF+JLF algorithm.

5.3.6 Implementation details

Each element in the proposed segmentation pipeline is implemented in C++ and CUDA (NVIDIA

Corp., Santa Clara, CA) and wrapped in VTK (Kitware Inc., Clifton Park, NY) filters and made

available publicly within the ASeTs repository on https://sourceforge.net/projects/asets/. The

JLF technique in [10] was released within the Advanced Normalization Tools (ANTs) [43] and

the elements of the registration pipeline are available within the RANCOR [34, 44] and Nifty

Reg packages [45].
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5.4 Results

5.4.1 Intensity Distribution Results

As stated in Section 5.3.4, the intensity distribution models were evaluated based on the dif-

ference in Kullback-Leibler divergence. For the sampling of the ground truth distribution, we

used the entire test set of images. This also maintained the separation of training and testing

data. The results for foreground labels in terms of the natural unit (nat) of continuous infor-

mation using equation 5.14 are presented in Table 5.2. Positive results indicate that KSOM

produces a lower divergence than EM and negative indicate the opposite.

∆DKL (nats)
MICCAI 2012 cGM 2.9 ± 5.0
OASIS sGM 420.6 ± 108.5

WM 35.7 ± 8.8
BS 821.2 ± 480.0
V 75.8 ± 273.7

Table 5.2: Intensity Distribution Validation

Results were significant to p < 0.05 after Bonferroni correction are shown in bold.

5.4.2 Run Times

Maximum run times for the various framework components are presented in Table 5.3.

5.4.3 Segmentation Results

The quantitative segmentation results are reported for the MRBrainS database in Table 5.4 and

for the OASIS database in Table 5.5. For the OASIS database, the evaluation is done in pairs,

comparing Potts with GHMF. Significantly better results (in terms of a two-tailed t-test with

p ≤ 0.05) are shown in bold for both Potts and GHMF.

Visual segmentation results (using the GHMF+JLF version of the algorithm) are presented

for OASIS (Figure 5.5) and MRBrainS (Figures 5.6 and 5.7) displaying both best case and
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OASIS Max. Run Time [min]
Affine Reg. 1.85
Deformable Reg. 1.35
MLF 0.07
JLF 57.0
Regularization 1.25
Total w/ MLF 49.32
Total w/ JLF 106.25
MRBrainS
Affine Reg. 0.62
Deformable Reg. 0.68
JLF 11.0
Regularization 0.65
Total w/ JLF 24.65

Table 5.3: Maximum run times.

worst case results. Enlarged regions of interest (ROIs) with high disagreement between our

segmentation results and the gold standard are also shown. For all rows, the underlying image

(or images) are shown on the left, followed by the gold standard in the center, and then our

segmentation on the right.

MRBrainS GHMF + JLF
DSC CSF 82.10 ± 4.42

GM 84.13 ± 1.46
WM 87.96 ± 1.11
mean 84.73 ± 3.65

AVD CSF 12.78 ± 11.57
GM 5.44 ± 3.81
WM 6.59 ± 4.81
mean 8.27 ± 8.08

MHD CSF 2.71 ± 0.72
GM 1.92 ± 0.00
WM 2.49 ± 0.46
mean 2.37 ± 0.59

Table 5.4: Segmentation Results - MRBrainS
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Figure 5.5: Best and Worst Case Visual Results - OASIS (top row: best case T1w image, gold
standard, proposed method, worst case T1w image, gold standard, proposed method. bottom
row: enlarged ROIs)

Figure 5.6: Best Case Visual Results - MRBrainS (top row: T1w, T1IR, T2FLAIR, gold stan-
dard, proposed method. bottom row: enlarged ROI)
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OASIS Potts + MLF GHMF + MLF Potts + JLF GHMF + JLF
DSC
cGM 86.00 ± 4.72 86.36 ± 4.43 88.42 ± 3.39 88.88 ± 3.32
sGM 85.45 ± 4.3 86.06 ± 3.84 91.06 ± 1.77 91.10 ± 1.78
WM 89.68 ± 3.95 89.93 ± 3.53 92.47 ± 2.73 92.56 ± 2.67
V 87.41 ± 3.61 87.53 ± 3.58 91.14 ± 3.07 91.22 ± 3.01
BS 89.05 ± 2.24 89.11 ± 2.25 92.96 ± 0.92 92.99 ± 0.92
mean 87.52 ± 3.76 87.80 ± 3.52 91.21 ± 2.38 91.35 ± 2.34
AVD
cGM 7.00 ± 5.63 5.65 ± 4.58 4.17 ± 2.85 3.76 ± 2.50
sGM 8.91 ± 8.44 7.16 ± 7.35 3.45 ± 2.04 3.22 ± 1.90
WM 11.59 ± 11.81 10.19 ± 10.93 7.70 ± 7.13 7.50 ± 7.00
V 14.26 ± 10.58 14.74 ± 10.51 6.97 ± 5.33 6.77 ± 5.55
BS 8.18 ± 5.84 6.93 ± 5.88 5.00 ± 2.20 2.66 ± 2.11
mean 9.99 ± 8.46 8.94 ± 7.85 5.00 ± 3.87 4.78 ± 3.81
MHD
cGM 2.18 ± 0.26 2.20 ± 0.22 2.18 ± 0.38 1.99 ± 0.34
sGM 1.98 ± 0.50 1.95 ± 0.50 1.31 ± 0.27 1.30 ± 0.23
WM 1.55 ± 0.44 1.56 ± 0.43 1.17 ± 0.32 1.19 ± 0.36
V 1.79 ± 0.60 1.91 ± 0.57 1.18 ± 0.21 1.20 ± 0.23
BS 2.21 ± 0.46 2.23 ± 0.44 1.56 ± 0.26 1.54 ± 0.26
mean 1.94 ± 0.45 1.97 ± 0.43 1.48 ± 0.29 1.44 ± 0.28

Table 5.5: Segmentation Results - OASIS: significantly better metrics are shown in bold

5.5 Discussion

5.5.1 Accuracy

At the time of writing, our multi-atlas framework was the highest ranking framework submitted

to the MRBrainS competition. These rankings are an aggregate measure of quality across the

numerical results shown in Table 5.4.

In both our best case and worst case, there is a slight over-regularization of cortical folds

likely due to some uncertainty in the intensity priors and spatial priors as a result of partial

volume effects and registration error respectively. In the worst case image, white matter lesions

are largely over-segmented, and the regularization term has difficult maintaining elongated

structures such as the posterior horn of the ventricle.

GHMF shows a slight improvement over the Potts model using the same data terms across
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Figure 5.7: Worst Case Visual Results - MRBrainS (top row: T1w, T1IR, T2FLAIR, gold
standard, proposed method. bottom row: enlarged ROI)

most metrics (23 out of 30), DSC (which both were tuned for) in particular. Although this

difference is slight, it is significant in many places. Out of the 30 metrics evaluated, GHMF

outperformed Potts on 17, Potts outperformed GHMF on 1, and the remaining 12 were not

significant. GHMF also outperformed Potts significantly on 5 of the 6 aggregate metrics.

In terms of our visual results, our worst case scenario was dominated by white matter

lesions. These lesions have a similar intensity as gray matter, making them more difficult to

distinguish based on the intensity models. This caused the mis-segmentation of white matter

lesions as gray matter. This can be mitigated by the incorporation of T2 FLAIR acquisitions

and the inclusion of white matter lesions as a separate segmentation label. However, neither

were available in the OASIS database.

The λ and βL parameters were tuned specifically for the Potts model. This implies that our

results are, in theory, biased towards improved Potts models, which, along with the limited

size and variability in the gold standard segmentations, could lead to an understatement of the

improvements yielded by incorporating more complex, representative topological information

using GHMF.
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5.5.2 Generality and Hierarchy Selection

Our framework has been designed with generality across applications and modalities in mind.

The improvement of GMM trained via Kohonen self-organizing maps over expectation

maximization is known in the literature for synthetic problems [38, 39, 40]. This improvement

is expected in any case where the underlying distribution displays some continuum behaviour

(such as intensity variation resulting from magnetic field inhomogeneity in MRI) or generally

requires a large number of Gaussian components. (These results are reflected in our evaluation

as shown by Table 5.2.) In addition, the duality displayed in KSOMs as being both a continuous

manifold and probability distribution could yield insights into methods of dimensionality re-

duction, useful in image processing outside of segmentation. This makes KSOM-based GMMs

a theoretically sound tool for modelling intensity distributions in multi-channel images above

those achieved with EM.

Our framework also allows for more generality in terms of the geometrical relationships of

the labels being segmented. Unlike the Potts and Ishikawa models, which have relatively few

possibilities, GHMF models allow for a large number of hierarchies to be defined expressing a

wide degree of geometric knowledge. However, there are issues associated with the selection of

hierarchies which do not have an analogue in the simpler models. For the OASIS database, we

performed a six label segmentation that was arranged in one of the 2752 possible hierarchies.

The seven label case from the MRBrainS database corresponds to 39208 hierarchies [46] and

the number of possible hierarchies grows super-factorially with the number of labels being

segmented. Because of the sheer number of hierarchies, a full exploration of hierarchical

models is impossible in general.

5.5.3 Run Time and Applicability

One issue with multi-region segmentation currently is the prohibitive run times associated with

these processes. Some components’ run times scale with the number of atlases included, specif-

ically the registration and label fusion components.



www.manaraa.com

Chapter 5. Multi-Atlas Segmentation Framework with KSOM 160

All components were GPGPU accelerated with the exceptions of affine registration and

JLF, for which open source implementations were used. This resulted in a maximum runtime

on the OASIS database and MRBrainS of 106 and 23 minutes, respectively. In both cases, the

most time prohibitive portion of our framework is the joint label fusion [10] taking approxi-

mately 50% of the total run time. In future, this technique could be implemented in a GPGPU

accelerated form to address this issue, or more computationally inexpensive techniques such

as mean label fusion could be used.

The computational feasibility and theoretical generality indicate that our multi-atlas seg-

mentation framework should be applicable to a wide array of multi-region segmentation prob-

lems.

5.5.4 Combinatorial Optimality

Previous optimal variational approaches such as those presented in [25] and [47] have consid-

ered optimality in both the relaxed and combinatorial contexts. These methods have shown

the strong duality, proven for the relaxed method, indeed applies under integrality constraints

through simple, linear-time operations such as thresholding. Because GHMF is a generaliza-

tion of these segmentation problem classes, it makes the same guarantees and similar processes

can be used to guarantee the combinatorial optimality of GHMF results conditioned on proper-

ties of the hierarchy. For example, if the hierarchy can be transformed into an Ishikawa model

in polynomial time, global optimality in the discrete case can be guaranteed [32].

However, it is well known that simple multi-region segmentation configurations, such as

the Potts model, are NP-hard even constrained to finite lattice graphs [48] which is a strong

indication that this duality gap for general hierarchies in a variational sense may not be bridged

with simultaneous computational efficiency and theoretical optimality. This problem has been

well documented for the continuous Potts model in particular [20, 21, 22].
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5.5.5 Similar approaches

The proposed method is similar to the hierarchical approach taken by [4]. In terms of simi-

larities, both frameworks take advantage of multi-channel data using a probabilistic intensity

model. Both use deformable registration to define probabilistic spatial priors. Most notable,

both frameworks express the topological relationships, specifically part/whole relationships, in

the form of a hierarchy or tree.

Conceptually, this structure describes a series of segmentations in which each object is

subdivided into its constituent parts, the final segmentation being the collection of ’indivisible’

labels. In [4], this interpretation is implemented directly, resulting in a series of segmentation

problems each referring to a subdivision mentioned above. Our framework on the other hand,

using a large-scale graphical model, addresses the optimization problem directly with one si-

multaneous segmentation of all labels while still maintaining this topological structure. This

addresses a weakness identified by [4], specifically that a purely top-down framework would

not be able to recover from early-stage segmentation errors.

Another key difference between these frameworks is the scale of the probabilistic intensity

model. [4] used single Gaussians as the distribution for each label. Although the parameters

of these Gaussians could be learned with certain optimality, they do not have the flexibility of

our large-scale, KSOM based Gaussian mixtures to capture continuous shifts in the intensity

distribution caused by inhomogeneities either in the tissues or underlying magnetic field.

5.5.6 Future Work

There are many directions in which to take this segmentation approach. The first is to extend

our results to a variety of complex, multi-faceted anatomies outside of brain segmentation, and

to extend our results within brain segmentation to atlases and labeling protocols with a large

number of regions such as those presented in other open brain image databases.

To mitigate for the effects of hierarchy selection, we could transition to more advanced

max-flow solution algorithms that allow for arbitrary sets of objects to be regularized. In such
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a framework, hierarchies can automatically be generated to satisfy any specification of topo-

logical part/whole relationships [49].

Lastly, some components of our label fusion approaches could be improved to incorporate

a level of expected registration error to mitigate the effects of mis-registration of one or more

atlas image to the image being segmented. JLF incorporates this based on intensity information

from the underlying image, but when such intensity information is sparse, or the difference in

intensity between adjacent labels is slight, other distance-based approaches may be applicable.

5.6 Conclusions

In this article, we present a novel segmentation pipeline which takes advantage of optimization

techniques in segmentation through the use of:

• intensity distribution modelling through large-scale Gaussian mixture models to ensure

more robust and accurate probabilistic models, and

• generalized hierarchical max-flow segmentation to optimally combine probabilistic in-

formation from the above two with boundary regularization requirements.

We have found that this multi-atlas based segmentation pipeline can be significantly improved

by using a Kohonen self-organizing map based learning procedure for the large scale Gaussian

mixture model over traditional expectation maximization, and the incorporation of hierarchical

regularization and part-whole relationships over the traditional Potts model.

These results were determined based on segmentations of the OASIS database of T1-

weighted MR images and the multi-channel MRBrainS 2013 database.
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Neurocomputing, 63:99–123, 2005.



www.manaraa.com

BIBLIOGRAPHY 168

[40] Hujun Yin and Nigel M Allinson. Self-organizing mixture networks for probability den-

sity estimation. Neural Networks, IEEE Transactions on, 12(2):405–411, 2001.

[41] Neuromorphometrics. Neuromorphometrics, Inc.

http://www.neuromorphometrics.com/, 2014. Accessed: 2014-05-08.

[42] Nicholas J Tustison and James C Gee. N4itk: Nick’s N3 ITK implementation for MRI

bias field correction. Insight Journal, 2009.

[43] ANTs. ANTs - Advanced Normalization Tools.

http://sourceforge.net/projects/advants/, 2010. Accessed: 2014-05-08.

[44] RANCOR. RANCOR - registration via convex relaxation.

http://sourceforge.net/projects/rancor/, 2014. Accessed: 2014-05-08.

[45] Marc Modat, Gerard R Ridgway, Zeike A Taylor, Manja Lehmann, Josephine Barnes,
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Conclusions

We presented methods for the segmentation of scar tissue from late-gadolinium-enhancement

MRI and brain tissue from multi-sequence MRI in semi- and fully automated processing

pipelines, respectively. Both methods employ a label hierarchy to extend the well-known Potts

model to multi-region segmentation including prior information about the anatomical appear-

ance and can be readily implemented using GPGPU for a substantial increase in computation

speed.

The ability to individually regularize labels in these hierarchies allow for proper incorpora-

tion of variable smoothness requirements across different anatomical structures, thus resulting

in more accurate segmentation. The advantages of the continuous max-flow formulations, such

as avoidance of metrication artifacts and approximately globally optimal results, are preserved

with this new formulation and add to those mentioned previously. Additionally, the ability

to compute results within short time periods, make these algorithms available for large scale

multi-labelling problems, such as gray matter parcellation of the brain or multi-organ segmen-

tation in the abdomen.

Furthermore, two methods have been proposed and evaluated for the regularization of de-

formation fields to address the ill-posedness of deformable registration methods. Using an

unsophisticated similarity metric, the sum-of-absolute intensity differences, we outperformed
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four high-ranked and well-known methods in pairwise brain registrations. Both regularizers

were implemented using GPGPU and demonstrated with far lower run times, while yielding

high accuracy in the majority of metrics. The highest performing method was subsequently

integrated into a multi-atlas pipeline for brain tissue segmentation, ranking high in a public

segmentation challenge.

We want to emphasize that developments in the field of graphics hardware such as faster

clock speeds, increase in memory, and available cores will largely impact the performance of

GPU-based algorithm run times and so potentially facilitate real-time computations of variants

of the proposed methods [1]. This is particularly of interest to the image-guided interventions

community, where problems often have to be solved in to real-time to facilitate guidance or

navigation tasks based on intra-operative imaging.

Future directions

Advanced Segmentation Tools (ASeTs)

In order to facilitate further development and advancement of the presented segmentation meth-

ods, all source code will be made available to the community in the form of a software repos-

itory. Further, we intend to provide simple examples on how to implement these max-flow

methods into new pipelines to potentially solve new problems. For this purpose, we created

the Advanced Segmentation Tools (ASeTs) library, containing a scalable implementation of the

Hierarchical Max-Flow algorithm [2] employed in the Chapters 2 and 5. The optimizers and

all employed data terms will be provided with an interface, to readily create modules in ’plug-

and-play’ manner using the well-known and established VTK library.

Further developments are intended to simplify customization of label ordering to solve

other segmentation problems. Developments such as the Directed Acyclic Graphical Max-

Flow (DAGMF) recently developed by Baxter et al. [3] allows labels to have multiple parents

and allows for more intuitive design of the label ordering supporting any configuration created
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using set theoretic operators. Additionally, recently proposed constraints can be enforced on

labels to incorporate additional information about the objects, such as Star-shape priors [4]

which enforce convexity of the region towards one or more points, or constraints on the volume

of the segmented objects [5].

Lastly, we will provide general-purpose tools, such as those for multi-atlas label fusion

problems and means of max-flow based contour evolution (see [6]), building and extending on

developments in this thesis.

Registration via Convex Relaxation (RANCOR)

The RANCOR approach demonstrated promising performance in deformable image registra-

tion of pairwise brain images. Note, that the non-smooth total variation approach using the L1

norm yielded higher accuracy than its quadratic counterpart. The source code of the former

will be publicly released and optimizability of the Lp-norm, where 0 < p < 1 investigated.

Further, general means of improving registration methods, such as employing advanced simi-

larity metrics, (i.e. mutual information, normalized cross-correlation or the MIND descriptor

[7], or symmetric warping techniques) will be investigated.

We hope that methods developed in this thesis contribute to solving complex and important

problems in the field of medical image analysis and continue to be employed within clinical

studies to ultimately impact medical discovery and patient care.
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Appendix A

Potts Model and Convex Relaxation

The Potts model originates from statistical physics [1]. Its spatially continuous version can be

stated by partitioning the continuous image domain Ω into n disjoint subdomains {Ωi}
n
i=1 with

the minimum total perimeter such that:

min
{Ωi}

n
i=1

n∑
i=1

∫
Ωi

ρi(x) dx + α

n∑
i=1

|∂Ωi| (A.1)

s.t. ∪n
i=1 Ωi = Ω ; Ωk ∩Ωl = ∅ , ∀k , l (A.2)

where |∂Ωi| measures the perimeter of each disjoint subdomain Ωi, i = 1 . . . n; the function

ρi(x), i = 1 . . . n, evaluates the cost of assigning the label li to the specified position x ∈ Ω and

the positive α > 0 gives the trade-off between the total perimeter and assignment cost.

Obviously, the Potts model (A.1) favors the segmented regions with ’tight’ boundaries and,

by (A.2), each pixel can be assigned to only one region.

Let ui(x), i = 1 . . . n, denote the indicator function of each disjoint subdomain Ωi, i.e.

ui(x) :=


1 , x ∈ Ωi

0 , x < Ωi

, i = 1 . . . n . (A.3)
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Hence, the perimeter of each disjoint subdomain Ωi can be evaluated by

|∂Ωi| =

∫
Ω

|∇ui| dx , i = 1 . . . n . (A.4)

In view of (A.3) and (A.4), the Potts model (A.1) can then be identically reformulated as

min
ui(x)∈{0,1}

n∑
i=1

∫
Ω

ui(x)ρi(x) dx + α

n∑
i=1

∫
Ω

|∇ui| dx (A.5)

s.t.
n∑

i=1

ui(x) = 1 , ∀x ∈ Ω ; (A.6)

where the constraints on ui(x), i = 1 . . . n, in (A.6) just corresponds to the condition (A.2),

i.e. each image pixel can be assigned to one and only one region.

Solving the Potts model (A.5) is challenging due to the binary constraint of each labeling

function and the linear equality constraint (A.6). In this regard, the convex relaxation tech-

nique was recently developed to efficiently compute (A.5) by the reduced convex optimization

problem:

min
u(x)∈4+

n∑
i=1

∫
Ω

ui(x) ρi(x) dx + α

n∑
i=1

∫
Ω

|∇ui| dx (A.7)

where the binary constraint of each labeling function ui(x) ∈ {0, 1}, i = 1 . . . n, is relaxed to

the convex section of ui(x) ∈ [0, 1], then at each pixel x ∈ Ω, the labeling functions suffice the

convex constrained set 4+:

n∑
i=1

ui(x) = 1 ; ui(x) ∈ [0, 1] , i = 1 . . . n .

The main motivation of exploring such convex relaxation formulation is that a series of

efficient convex optimization algorithms [2, 3, 4, 5, 6] can be employed to well approximate

the original combinatorial optimization problem (A.5) in a computationally ’economical’ way;

such as the duality-based continuous max-flow approach [2, 3], the Douglas-Rachford splitting
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algorithm [4], the iterative primal-dual algorithm [5] and the entropy-maximum regularized

algorithm [6] etc.

In this work, we focus on the efficient continuous max-flow method, like [2, 3], which im-

plicitly encodes the ordered region constraint with maximizing the corresponding flow func-

tions and avoids directly tackling the existing non-smooth energy function terms.
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Appendix B

RANCOR - Dual Optimization Analysis

Given the conjugate representation of the absolute function:

|v| = max
w

w · v , s.t. |w| ≤ 1 , (B.1)

we can rewrite the first L1-norm term of (4.10) as follows:

∫
Ω

|P0 + ∇P · h| dx = max
|w(x)|≤1

∫
Ω

w(P0 + ∇P · h)dx . (B.2)

Additionally, given the regularization function, R(ũ + h), in terms of (4.6), we also have

α

3∑
i=1

∫
Ω

|∇(ũi + hi)|p dx

= max
q

3∑
i=1

∫
div qi(ũi + hi)dx − R∗p(q) , (B.3)

where each dual variable qi(x), i = 1, 2, 3, gives a vector function and, for the case p = 2,

R∗2(q) =
1
α

3∑
i=1

∫
|qi(x)|2 dx , (B.4)
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for the case p = 1,

R∗1(q) = χ|q1,2,3(x)|≤α(q) , (B.5)

i.e. the characteristic function of the constraints |qi(x)| ≤ α, i = 1, 2, 3.

Considering (B.2) and (B.3), it is easy to see that the convex minimization problem (4.9) is

mathematically equivalent to the following minimax problem:

min
h

max
|w(x)|≤1,q

∫
w(P0 + ∇P · h)dx

+

3∑
i=1

∫
div qi(ũi + hi)dx − R∗p(q) (B.6)

i.e.

min
h

max
|w(x)|≤1,q

∫
(wP0 +

3∑
i=1

ũi div qi)dx

+

3∑
i=1

∫
hi(w · ∂iP + div qi)dx − R∗p(q) (B.7)

which is called the primal-dual formulation in this thesis.

After variation by the free variable hi(x), i = 1, 2, 3, the minimization of the primal-dual

formulation (B.7) over hi(x), i = 1, 2, 3, results in the linear equalities’ constraints

(w · ∂iP + div qi)(x) = 0 , i = 1, 2, 3 , (B.8)

and the maximization problem

max
|w(x)|≤1,q

E(w, q) :=
∫

(wP0 +

3∑
i=1

ũi div qi)dx − R∗p(q)

thereby proving Prop. 4.2.1.
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